• Title/Summary/Keyword: 나노하이브리드

Search Result 244, Processing Time 0.032 seconds

Manufacture of Yellow Ocher Polystyrene-Based Hybrid Nanoparticles for High-Performance PET Applications (고성능 페트 생산용 폴리스티렌 기반 하이브리드형 나노구조체 생산)

  • Choi, Jae Bong;Kim, Sanghee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.701-707
    • /
    • 2014
  • The ecofriendly yellow ocher is used in the manufacturing of cosmetics, construction, and food packaging. The polyethylene terephthalate (PET) used for manufacturing food containers has a microporous structure that causes aeration. Hydrophilic yellow ocher may be applied to hydrophobic PET by surface modification to overcome this issue. The aim of this study is to fabricate a yellow ocher polystyrene hybrid structure in the form of nanoparticles using an optimizing molar ratio of styrene, divinylbenzene, and potassium peroxodisulfate for use in emulsion polymerization. The polymerization was conducted in a yellow ocher suspension that was prepared by dispersing mechanically ground yellow ocher in DI water. The prepared hybrid structure was measured using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The measurement revealed the spherical morphology and Si component that resulted from the yellow ocher in the polystyrene particles. We expect that this hybrid structure would be used as platform material to minimize aeration in PET.

Fabrication of a Nano/Microfiber Hybrid Mat for Control of Mechanical Properties and Porosity (기계적 특성 및 공극률 조절을 위한 나노/마이크로섬유 하이브리드 매트 제작)

  • Kim, Jeong Hwa;Jeong, Young Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.41-48
    • /
    • 2017
  • Fine polymeric fibers have been gaining interest from the energy harvesting/storage, tissue, and bioengineering industries because of advantages such as the small diameter, high porosity, permeability, and similarities to a natural extracellular matrix. Electrospinning is one of the most popular methods used to fabricate polymeric fibers because it is not as limited in regards to the materials selection, and it does not require expensive or complex equipment. However, electrospun fibers have a severe aerodynamic instability because the small diameter fibers are able to pass through the atmospheric layer when there is a high electric field. As a result, electrospun fibrous mats have serious difficulties with controlling its shape and geometric properties. In this study, a hybrid nano/microfibrous mat is presented that is fabricated using electrospinning with two different solvent-based PCL solutions. This provides control of the fiber diameter, mat porosity, and mechanical properties. Various hybrid fibrous mats were fabricated after an experimental investigation of the effects of solvent on fiber diameter. It was then demonstrated that the mechanical properties and porosity of the fabricated various hybrid mats could be successfully controlled.

Synthesis and Characterization of Silica/Polystyrene Composite Nanoparticles by in situ Miniemulsion Polymerization (In situ 미니에멀젼중합에 의한 실리카/폴리스타이렌 복합체 나노입자의 합성과 특성)

  • Patole, Archana S.;Patole, S.P.;Song, Mi-Hyang;Yoon, Joo-Young;Kim, Jin-Hwan;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • New coupling agent or surface modified agent (9-decenoic acid) was used to enhance the compatibility between silica and polystyrene in silica/polystyrene hybrid nanocomposite, synthesized by in situ miniemulsion polymerization. Composites contain well dispersed nanosize silica particles. Related tests and analyses confirmed the success of synthesis. Functionalization of silica by 9-decenoic acid and silica on the polystyrene was confirmed by FTIR. TGA showed presence and amount of silica in final latex. The glass transition temperature of the hybrid nanocomposite was increased with the silica amount. SEM and TEM analysis showed the spherical morphology of PS and composite with an average diameter of 55 nm. The presence of silica within composite was confirmed by EDS attached to the existing TEM.

Optoelectric properties of hybrid materials with Ag-nanowire and 2-dimensional structured RuO2 (은나노와이어와 2차원 구조 루테늄산화물 하이브리드 재료의 광전기적 특성)

  • Jeong Min Lee;Hee Jung Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.55-60
    • /
    • 2024
  • Two-dimensional (2D) RuO2 nanosheets with nanometer thickness were synthesized using a chemical exfoliation method. The synthesized 2D-RuO2 was hybridized with Ag-nanowire (NW), which is attracting attention as a next-generation transparent electrode material. After coating Ag-NW on the substrate, 2D-RuO2 was subsequently coated on the Ag-NW. Although there was a decrease in optical transmittance, the hybridization of 2D-RuO2 confirmed the effect of reducing sheet resistance. Furthermore, the flexibility of the fabricated transparent electrodes was also studied. It was confirmed by the change in sheet resistance after bending. The additional coating of 2D-RuO2 improved the flexibility of the transparent electrodes.

Fabrication of nano texturing on the polymer surface for transmittance property (폴리머 기판상 나노 구조 형성을 통한 광특성 제어 연구)

  • Byeon, Eun-Yeon;Lee, Seung-Hun;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.87.2-87.2
    • /
    • 2017
  • 폴리머 필름에 표면처리 및 코팅, 필름의 다층화, 원료 소재의 하이브리드화 등을 통해서 기능성을 부여한 기능성 고분자 필름은 디스플레이, 반도체, 자동차, 에너지, 포장재 등 다양한 분야에 응용되고 있다. 기능성 고분자 필름의 산업화를 위해 대면적 연속 공정기술 개발이 필요하며, 본 연구에서는 roll to roll 시스템을 이용하여 폴리머 기판상 나노 구조 형성을 위한 공정연구를 수행하였다. 재료연구소 자체 개발 선형이온소스는 0.25 keV에서 1 keV까지 에너지 조절이 용이하며, 이온빔 조사를 통해서 PET, PMMA, PDMS 등 다양한 폴리머 기판의 표면에 나노 구조화 공정을 개발하였다. 표면 나노 구조 형성을 통해서 폴리머 필름의 투과도와 Haze 제어가 가능하며, 공정 기술을 통해 저반사 및 고굴절 특성의 기능성 필름을 제작하였다. 이러한 나노 구조화 필름은 플렉서블 디스플레이의 광추출효율 향상을 위한 광추출층, 저반사 디스플레이 패널 필름 등에 적용 가능한 기술이다.

  • PDF

Effects of nano-particles additions on the adhesion propertis of coating layer (나노 입자 첨가에 따른 도장막의 부착력 평가)

  • Lee, Hyeon-Ju;U, Seong-Min;Kim, Ho-Hyeong;Hwang, Tae-Jin;Kim, Yang-Do
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.70-70
    • /
    • 2011
  • 표면처리는 전기적, 물리적, 화학적 처리방법 등을 통해 보호표면을 생성시킴으로서 재료의 외관미화, 내마모성, 전기절연, 전기전도성 부여 등의 폭넓은 목적을 달성시키고자 하는 일련의 조작을 말한다. 최근 스마트 휴대폰으로 대표되는 이동통신기기 산업의 빠른 성장으로 인하여 이들 기기를 보호하기 위한 표면 처리기술도 함께 발전하고 있다. 그중 대표적인 것이 나노기술을 융합한 보호막 도장기술이다. 나노입자를 분산하거나 나노상(phase)을 융합하여 제품의 표면에 보호막을 도장하는 기술이며, 그 주된 목적은 내 스크래치, 내 부식 등의 물리 화학적 보호기능을 수행하도록 층(layer)을 형성하는 것이다. 본 연구에서는 제조된 실리카 나노입자와 유기물을 사용하여 휴대폰 케이스에 도장막을 형성하였고, Scratch, Wear, hardness Test등의 분석을 통하여 유무기 하이브리드 도장막의 특성을 평가하였다.

  • PDF

A study on the Initial Nanopore Formation in the Calix Arene Based Porogen Templated Porous Thin Film (칼릭스아렌 포로젠을 이용한 다공성 박막의 초기 나노기공 형성과정에 관한 연구)

  • Kim, Do-Hun;Yim, Jin-Heong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.669-675
    • /
    • 2011
  • Fourier Transform Infrared Spectroscopy and in-situ Position Annihilation Lifetime Spectroscopy(PALS) analysis of hybrid film, which consist of silsesquioxane(SSQ) and 4-tert-butyl calix[4]arene-O,O',O",O'"-tetraacetic acid tetraethyl ester(CA[4]) have been investigated in order to understand initial formation of nanopore in the next generation porous low-k dielectrics(k < 2.0). SSQ/CA[4] can provide effective homogeneous thin film having porous structure. The porogen decomposition behavior were completely different in the two kinds of SSQ/CA[4] based hybrid film (i.e. SSQ/CA[4] 10 and SSQ/CA[4] 20%). Relatively small pores(1.5 nm) come from dispersion of uni-molecular CA[4] in the SSQ matrix have been generated at $300^{\circ}C$, while mesopores(2.5~3.0 nm) induced from self assembled CA[4] have been generated at $250^{\circ}C$. It might be due to highly interconnected structure of SSQ/CA[4] 20% hybrid thin film resulting in facile evacuating of decomposed fragment of CA[4] molecule.

Preparation of Hydrophobic Coating Layers Using Organic-Inorganic Hybrid Compounds Through Particle-to-Binder Process (유-무기 하이브리드 화합물과 Particle-Binder 공정을 이용한 소수성 코팅막 제조)

  • Hwang, Seung-Hee;Kim, Hyo-Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.143-155
    • /
    • 2020
  • Hydrophobic Organic-Inorganic (O-I) hybrid materials prepared by sol-gel process have been widely used at functional coating fields such as coatings for anti-corrosion, anti-icing, self-cleaning, anti-reflection. The key point for fabricating hydrophobic surface is to optimize the surface energy and roughness of the coating films. There are typical processes to control the surface energy and roughness which are 'In situ fabricating', 'Pre-fluorinating/Post-roughening', 'Pre-roughening/ Post-fluorinating'. In this study, particle-binder process was used for in-situ fabrication of hydrophobic coating films. Various O-I hybrid compounds prepared using several kinds of alkoxysilane compounds were used as a binder for silica nanoparticles at particle-binder process. To study effect of fluorine content and weight ratio of particle : binder on the hydrophobicity and surface morphology, Hydrophobic coating films were prepared onto glass substrate at various content of fluorine content of O-I hybrid binder and weight ratio of particle : binder. The coating films prepared using O-I hybrid binder (GPTi-HF10) having 10 wt% of fluorine content showed the highes water contact angle (107.52±1.6°). The coating films prepared at 1:3 weight ratio of GPTi-HF10 : silica nanoparticle exhibited the highest water contact angle (130.84±1.99°).

Functional Films with inorganic silica nanoparticles dispersion (실리카 나노입자를 첨가한 기능성 코팅 기술)

  • Hwang, Tae-Jin;Kim, Ho-Hyeong;Kim, Gyun-Tak;Park, Jae-Yeong;Lee, Heung-Ryeol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.61-62
    • /
    • 2011
  • 실리카 나노입자를 분산시킨 기능성 코팅 소재를 개발하였다. 본 기능성 코팅 소재는 마그내슘 판재에 적용하여 내스크래치 및 내부식성을 향상시키기 위한 것이다. 최근 마그네슘 판재는 스마트 폰 및 이동통신 기기의 외장재소재로 각광을 받고 있다. 그러나 표면의 기계적 강도가 약하고, 특히 수분에 의한 부식이 심각하여 사용에 많은 제한을 받고 있다. 본 연구에서는 실리카 나노입자가 분산된 유무기 하이브리드 코팅을 적용하여 기계적 강도 및 내부식성을 향상하고자 하였다. 분산하는 나노입자의 크기를 달리하여 코팅층으로부터 각각 다른 물리적 화학적 특성을 유도할 수 있었다. 각 코팅 층의 특성은 연필경도, 기판 휨 각도, 그리고 electrochemical impedance spectroscopy 등을 이용하여 평가하였고, 최종적으로 휴대폰 신뢰성 평가 기법을 적용하여 상용화 적용성도 평가하였다.

  • PDF

Preparation of Hydrophobic Antimicrobal Compounds Encapsulated Nanoparticles Using Alkoxysilane-functionalized Amphiphilic Polymer Precursor and Their Antimicrobial Properties (실란 기능화 양친성 고분자 전구체를 이용한 소수성 항균물질 담지 나노 입자 제조 및 항균 특성)

  • Kim, Nahae;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.18 no.1
    • /
    • pp.13-24
    • /
    • 2017
  • In this study, nanoparticles which encapsulated hydrophobic antimicrobial compounds with 50wt% of payload and 70%of solid content were prepared. These nanoparticles could be dispersed at water as well as various medium. Water dispersible organic-inorganic (O-I) hybrid nanoparticles were first prepared using alkoxysilane-functionalized amphiphilic polymer precursors through a conventional sol-gel process. Hydrophobic antimicrobial compound, Eugenol encapsulated nanoparticles were prepared using these O-I hybrid nanoparticles through a new nanoprecipitation process. The effect of various preparation on the size of nanoparticles, amount of payload, antimicrobial activity, and release rate of encapsulated compounds was investigated. All eugenol-encapsulated O-I nanoparticles regardless of preparation condition showed the same minimal inhibitory concentration (MIC) (50mg/ml) and 99% of antimicrobial activity for every strain. Their antimicrobial activity could maintain longer than two weeks. Especially, eugenol-encapsulated O-I nanoparticles prepared using tetraethoxysilane (TEOS) exhibited the highest payload (50wt%) and the lowest release rate which was owing to higher inorganic content in the O-I nanoparticles. And these O-I nanoparticles dispersed in hexanediol (HD) showed the highest antimicrobial activity and solid content (70wt%) because HD acted as a solvent as well as a antimicrobial agent.