DOI QR코드

DOI QR Code

Optoelectric properties of hybrid materials with Ag-nanowire and 2-dimensional structured RuO2

은나노와이어와 2차원 구조 루테늄산화물 하이브리드 재료의 광전기적 특성

  • Jeong Min Lee (Department of Materials Science and Engineering, Dankook University) ;
  • Hee Jung Park (Department of Materials Science and Engineering, Dankook University)
  • 이정민 (단국대학교 신소재공학과) ;
  • 박희정 (단국대학교 신소재공학과)
  • Received : 2024.04.01
  • Accepted : 2024.04.16
  • Published : 2024.04.30

Abstract

Two-dimensional (2D) RuO2 nanosheets with nanometer thickness were synthesized using a chemical exfoliation method. The synthesized 2D-RuO2 was hybridized with Ag-nanowire (NW), which is attracting attention as a next-generation transparent electrode material. After coating Ag-NW on the substrate, 2D-RuO2 was subsequently coated on the Ag-NW. Although there was a decrease in optical transmittance, the hybridization of 2D-RuO2 confirmed the effect of reducing sheet resistance. Furthermore, the flexibility of the fabricated transparent electrodes was also studied. It was confirmed by the change in sheet resistance after bending. The additional coating of 2D-RuO2 improved the flexibility of the transparent electrodes.

화학적 박리법을 이용하여 나노미터 두께를 갖는 2차원(2D) RuO2 나노시트를 합성하였다. 차세대 투명전극 소재로 주목받고 있는 Ag-nanowire(NW)와 본 연구에서 합성된 2D-RuO2를 하이브리드화하였다. 기판 위에 Ag-NW 코팅 후 2D-RuO2를 추가로 코팅하였다. 광투과도의 감소는 있었지만 2D-RuO2를 하이브리드화하여 면저항 감소 효과를 확인할 수 있었다. 또한 제조된 투명전극의 유연성 실험도 진행하였다. 벤딩 후 면저항 변화로 확인하였다. 2D-RuO2의 추가 코팅으로 투명전극 유연성이 향상되었다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (Ministry of Science and ICT (MSIT)) (No. RS-2023-00236572). The Department of Materials Science and Engineering was supported through the Research-Focused Department Promotion & Interdisciplinary Convergence Research Project as a part of the Support Program for University Development for Dankook University in 2023.

References

  1. H.J. Park, J. Kim, J.H. Won, K.S. Choi, Y.T. Lim, J.S. Shin and J.U. Park, "Tin-doped indium oxide films for highly flexible transparent conducting electrodes", Thin Solid Films 615 (2016) 8.
  2. J.M. Oh, M. Nasir, B. Ryu, H.J. Yun, C.J. Choi, J.S. Bae and H.J. Park, "Anomalous optoelectric properties of an ultrathin ruthenium film with a surface oxide layer for flexible transparent conducting electrodes", Adv. Fun. Mat. (2021) 2109330.
  3. A. Stadler, "Transparent conducting oxides-an up-to-date overview", Mater. 5 (2012) 661.
  4. K. Ellmer, "Past achievements and future challenges in the development of optically transparent electrodes", Nat. Photonics 6 (2012) 809.
  5. O.K. Varghese, M. Paulose and C.A. Grimes, "Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells", Nat. Nanotechnol. 4 (2009) 592.
  6. V.G. Kytin, V.A. Kulbachinskii, O.V. Reukova, Y.M. Galperin, T.H. Johansen, S. Diplas and A.G. Ulyashin, "Conducting properties of In2O3:Sn thin films at low temperatures", Appl. Phys. A 114 (2014) 957.
  7. M. Huang, Z. Hameiri, A.G. Aberle and T. Mueller, "Influence of discharge power and annealing temperature on the properties of indium tin oxide thin films prepared by pulsed-DC magnetron sputtering", Vac. 121 (2015) 187.
  8. D.S. Hecht, L. Hu and G. Irvin, "Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures", Adv. Mater. 23 (2011) 1482.
  9. X. Chen, X. Wu, S. Shao, J. Zhuang, L. Xie, S. Nie, W. Su, Z. Chen and Z. Cui, "Hybrid printing metal-mesh transparent conductive films with lower energy photonically sintered copper/tin Ink", Scientific Reports 7 (2017) 13239.
  10. Y. Jia, C. Chen, D. Jia, S. Li and C. Ye, "Silver nanowire transparent conductive films with high uniformity fabricated via a dynamic heating method", ACS Appl. Mat. & Inter. 8 (2016) 9865.
  11. A. Mauro, R. Diana, I.A. Grimaldi, F. Loffredo, P. Morvillo, F. Villani and C. Minarini, "Polymer solar cells with inkjet-printed doped-PEDOT:PSS anode", Polymer Composites 34 (2013) 1493.
  12. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi and B.H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nat. 457 (2009) 706.
  13. X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A.K. Geim, K.S. Novoselov and Z. Hu, "Highly flexible and conductive printed graphene for wireless wearable communications applications", Scientific Reports 5 (2015) 18298.
  14. F. Alamer, K. Althagafy, O. Alsalmi, A. Aldeih, H. Alotaiby, M. Althebaiti, H. Alghamdi, N. Alotibi, A. Saeedi, Y. Zabarmawi, M. Hawsawi and M. Alnefaie, "Review on PEDOT:PSS-based conductive fabric", ACS Omega 7 (2022) 35371-353-86.
  15. H.B. Lee, W.Y. Jin, M.M. Ovhal, N. Kumar and J.W. Kang, "Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review", J. Mat. Chem. C 7 (2019) 1087.
  16. S. De and J.N. Coleman, "Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films", ACS Nano 4 (2010) 2713.
  17. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao and Y. Chen, "Evaluation of solution-processed reduced graphene oxide films as transparent conductors", ACS Nano 2 (2008) 463.
  18. T. Tokuno, J. Nogi, M. Karakawa, J. Jiu, T.T. Nge, Y. Aso and K. Suganuma, "Fabrication of silver nanowire transparent electrodes at room temperature", Nano Research 4 (2011) 1215.
  19. H.J. Park, K. Lee, I.D. Kim, S.J. Choi and B. Ryu, "Abnormal optoelectric properties of two-dimensional protonic ruthenium oxide with a hexagonal structure", ACS Appl. Mat. & Inter. 10 (2018) 22661.
  20. J. You, S.M. Lee, H.S. Eom and S.T. Chang, "Highly transparent conducting electrodes based on a grid structure of silver nanowires", Coatings 11 (2021) 11010030.
  21. M. Kaikanov, A. Kemelbay, B. Amazhulov, G. Demeuova, G. Akhtanova, F. Bozheyev and A. Tikhonov, "Electrical conductivity enhancement of transparent silver nanowire films on temperature-sensitive flexible substrates using intense pulsed ion beam", Nanotechnology 32 (2021) 145706.