• Title/Summary/Keyword: 나노공극

Search Result 54, Processing Time 0.03 seconds

Surface Milling for the Study of Pore Structure in Shale Reservoirs (셰일 저류층 내 공극 구조 연구를 위한 표면 밀링)

  • Park, Sun Young;Choi, Jiyoung;Lee, Hyun Suk
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2020
  • Understanding the pore structure including pore shape and connectivity in unconventional reservoirs is essential to increase the recovery rate of unconventional energy resources such as shale gas and oil. In this study, we found analysis condition to probe the nanoscale pore structure in shale reservoirs using Focused Ion Beam (FIB) and Ion Milling System (IMS). A-068 core samples from Liard Basin are used to probe the pore structure in shale reservoirs. The pore structure is analyzed with different pretreatment methods and analysis condition because each sample has different characteristics. The results show that surface milling by FIB is effective to obtain pore images of several micrometers local area while milling a large-area by IMS is efficient to observe various pore structure in a short time. Especially, it was confirmed that the pore structure of rocks with high content of carbonate minerals and high strength can be observed with milling by IMS. In this study, the analysis condition and process for observing the pore structure in the shale reservoirs is established. Further studies are needed to perform for probing the effect of pore size and shape on the enhancement of shale gas recovery.

Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion with Pure and Mixed Solvents (순수용매와 혼합용매를 이용한 상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조)

  • Kim, Young Kyoung;Cho, Yu Song;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2015
  • This paper reports a fabrication of poly(L-lactic acid) (PLLA) scaffold membranes through phase separation process using pure and mixed solvents. Chloroform and 1,4-dioxane were used as pure solvents and mixed solvents were obtained by mixing the pure solvents together. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. Scaffold membranes from the solution with pure chloroform showed solid-wall pore structure. In contrast, nano-fibrous membranes were fabricated from the solution with pure 1,4-dioxane. In case of mixed solvents, the scaffold membranes showed various structures with changing composition of the solvents. When 1,4-dioxane content was lower than 20 wt% in the solvent, scaffold membrane showed solid-wall pore structure. When the content was 20 wt%, scaffold membranes with macropores with the maximum size of $100{\mu}m$ was obtained. In the concentration range of 1,4-dioxane over 25 wt%, the scaffold membranes showed nano-fibrous structures. In this range, the fibers showed different diameters with changing composition of the solvent. The minimum fiber diameter was about $15{\mu}m$, when 1,4-dioxane composition was 80 wt%. These results indicate that the composition of the solvent showed a significant effect on the structure of scaffold membrane.

An Experimental Study on the Properties of Cement Composite Using Nano-silica (복합 나노실리카를 이용한 시멘트 복합체의 특성에 관한 실험적 연구)

  • Lee, Jun;Cho, Ku-Young;Seo, Jung-Pil;Baek, Byoung-Gyo;Kang, Suk-Pyo;Cho, Sung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.377-378
    • /
    • 2010
  • This study was performed an evaluation of engineering properties of cement composite according to type and content of Nano-silica as admixture for marine concrete. As the results of study, when considering the porosity and compressive strength, the proper type and content are thought to be type of sodium silicate and under 5%.

  • PDF

Fabrication of spiral scaffolds with nano-etched surface by using an innovative 3D printing method (혁신적인 3D 프린팅 방법을 사용하여 나노-에칭된 표면을 갖은 나선형 세포담체 제작)

  • Yang, Ji-Hun;Lee, Jae-Yun;Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.73-73
    • /
    • 2018
  • 조직재생공학은 조직이나 장기를 재생하고 유지하는 데 초점을 맞춘 종합 분야이다. 세포담체는 세포가 조직이나 장기로 발달 할 수 있도록 결정적인 역할을 한다. 따라서 공극률, 기공 크기, 기공 상호 연결성, 표면 거칠기, 기계적 강도 및 기하학과 같은 기본 요구 사항들은 중요한 특성으로 간주된다. Particle leaching, phase separation, solvent casting, gas foaming, selective laser sintering, fused deposition 및 3D dispensing (printing)과 같은 다양한 Rapid Prototyping 방법이 세포담체 제조에 사용되었다. 또한, 다양한 천연 및 합성 고분자가 세포담체를 제조하는데 사용되어왔다. 본 연구에서는 기존의 3D 프린팅 방법과 플라즈마 에칭 공정을 이용하여 나노 에칭 된 나선형 가닥으로 구성된 3 차원 세포담체를 제작 하였다. 제작 된 세포담체의 물리적 및 생물학적 성질을 비교 연구하기 위해, 본 연구에서는 매끄러운 가닥을 대조물로 사용하였다. 나노 에칭된 표면은 초기 세포 부착, 증식 및 골 형성 분화와 같은 세포 활동에 영향을 미쳤다.

  • PDF

Effects of Solvent on the Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion (상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조에서의 용매의 효과)

  • Cho, Yu Song;Kim, Young Kyoung;Koo, Ja-Kyung;Park, Jong Soon
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • Porous poly(L-lactic acid)(PLLA) scaffold membranes were prepared via. phase separation process. Chloroform, dichloromethane and 1,4-dioxane were used as solvent and, ethyl alcohol was used as non-solvent. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. The scaffold membranes obtained from the casting solutions with chloroform and with dichloromethane showed similar morphologies. They showed sponge-like porous structure with the pore size in the range of $3-10{\mu}m$ and, their porosities were in 50-80% range. Using 1,4-dioxane as solvent, nano-fibrous scaffold membranes with porosities over 80% were fabricated. When the polymer content in the solution with 1,4-dioxane was lowered to 4%, highly porous, macroporous and nano-fibrous scaffold membranes were obtained. The size of the macropore was tens of the microns and the porosity was around 90%. These results indicate that the solvent has significant effect on the scaffold membrane structure and, that scaffold membranes with various structures can be fabricated through phase separation method by choosing solvent and by controlling polymer concentration in the casting solution.

The Study of Pore Structure in Shale Gas Reservoir Using Large-area Particle Measurement Method (대면적 입자 측정 분석법을 이용한 셰일 가스 저류층 내공극 구조 연구)

  • Park, Sun Young;Ko, Yong-kyu;Choi, Jiyoung;Lee, Junhee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.209-218
    • /
    • 2021
  • Studies of pore structure in shale gas reservoirs are essential to increase recovery rates, which is in the spotlight concerning unconventional resources. In this study, the distribution of pores in shale gas reservoir sample were observed using Scanning Electron Microscope Particle Analysis (SELPA), which is appropriate to analyze the distribution of particle or shape for sample in large area. A sample from the A-068 borehole drilled in the Liard Basin was analyzed; calcite is the main mineral. The pore size ranges from tens of nanometers to hundreds of micrometers and the contribution of each pore size to overall sample porosity was determined using SELPA. The distribution of pores was determined by observing the surface in the same area at magnifications of ×1000, ×3000 and ×5000. Pores less than 100 nm were observed at high magnifications and confirm that small-scale pore distribution can be analyzed and identified rapidly using SELPA. The method introduced in this study will be useful to understand pore structures in unconventional reservoirs.

Basic Analysis on Fractal Characteristics of Cement Paste Incorporating Ground Granulated Blast Furnace Slag (고로슬래그 미분말 혼입 시멘트 페이스트의 프랙탈 특성에 관한 기초적 분석)

  • Kim, Jiyoung;Choi, Young Cheol;Choi, Seongcheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.101-107
    • /
    • 2017
  • This study aimed to conduct the basic analysis on the fractal characteristics of cementitious materials. The pore structure of cement paste incorporating ground granulated blast furnace slag (GGBFS) was measured using mercury intrusion porosimetry (MIP) and the fractal characteristics were investigated using different models. Because the pore structure of GGBFS-blended cement paste is an irregular system in the various range from nanometer to millimeter, the characteristics of pore region in the different scale may not be adequately described when the fractal dimension was calculated over the whole scale range. While Zhang and Li model enabled analyzing the fraction dimension of pore structure over the three divided scale ranges of micro, small capillary and macro regions, Ji el al. model refined analysis on the fractal characteristics of micro pore region consisting of micro I region corresponding to gel pores and micro II region corresponding to small capillary pores. As the pore size decreased, both models suggested that the pore surface of micro region became more irregular than macro region and the complexity of pores increased.

Fabrication and Evaluation of Hybrid Scaffold by Nano-Micro Precision Deposition System (나노-마이크로 정밀 분사 시스템을 이용한 하이브리드 인공지지체의 제작 및 평가)

  • Ha, Seong-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.875-880
    • /
    • 2014
  • Recently, three-dimensional scaffolds and nanofibers are being developed for bone tissue regeneration. In this study, we fabricated a hybrid scaffold using a nano-micro precision deposition system. The fabrication process involved the application of the solid freeform fabrication (SFF) technology and electrospinning. The hybrid scaffolds were combined using micro scaffolds and nanofibers. The nanofibers were deposited on each layer of the micro scaffolding using the electrospinning process. The micro scaffolds were fabricated using the SFF technology at a temperature of $100^{\circ}C$, pressure of 650 kPa, and scan velocity of 250 mm/s. Nanofiber fabrication was conducted by means of electrospinning using the flow rate, solution concentration, distance from the tip to the collector (TCD), and voltage. The nanofibers were fabricated using a flow rate of 0.1 ml/min, voltage of 5 kV, TCD of 1 mm, and 10 wt% of solution concentration. MG-63 cells were seeded into the hybrid scaffold for the purpose of its evaluation.

Analysis of Effect of Surface Modified Silica Nanofluid Injection on Carbonate Rock (탄산염암 내 표면개질된 실리카 나노유체 주입 효과 분석)

  • Jang, Hochang
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The purpose of this study is to prepare GPTMS((3-Glycidoxypropyl) trimethoxysilane)-SiO2 nanofluid and analyze the effect of nanofluid injection on carbonate reservoirs. Structural analysis of silica nanoparticles modified by GPTMS was investigated by FTIR(Fourier transform infrared spectroscopy). C-H stretching vibrations at 2,950 cm-1 indicating the silica surface modification with GPTMS were observed when the silane feed was over 0.5 mmol/g. Also, the coreflooding test by nanofluid injection on the aged limestone and dolomite plug samples was carried out with different particle concentration and flow rate. The incremental oil recovery was up to 18.9%, and contact angle and permeability of carbonate samples were changed by the effect of nanoparticle adsorption on pore which caused wettability alteration and pore size change. Therefore, the prepared nanofluid will be utilized as an injection fluid for enhancing oil recovery and modifying fluid flow properties such as change of rock wettability and permeability in carbonate reservoirs.

Preparation of Porous PMMA/TiO2 Microspheres by Spray Drying Process (스프레이 건조법을 이용한 PMMA/TiO2 다공성 입자 제조 및 특성 연구)

  • Paik, Dong-Hyun;Lee, Hyunsuk;Gang, Rae-Hyoung;Kim, Yong-Jin;Lee, John Hwan;Choi, Sung-Wook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Highly porous polymethyl methacrylate (PMMA) microspheres impregnated by $TiO_2$ powder were prepared by spray drying method. The particle size and the porosity were controlled by optimizing the co-solvent ratio and the polymer concentration. $TiO_2$ powder was impregnated into the microspheres upto 74.6 wt% content based on the weight of the resultant $PMMA/TiO_2$ microspheres. SEM images showed that $TiO_2$ powder was well distributed throughout the inside of the microsphere. EDX mapping showed that the Ti signal was well detected from every part of the microspheres, which was the evidence of the formation of the $PMMA/TiO_2$ composite. Hg porosimetry result showed that the porosity was found to be over 50% regardless of the $TiO_2$ contents. The final product was found to have high oil-absorbing capacity and great hiding power, both of which are key properties in designing the microsphere materials for make-up cosmetics application.