DOI QR코드

DOI QR Code

The Study of Pore Structure in Shale Gas Reservoir Using Large-area Particle Measurement Method

대면적 입자 측정 분석법을 이용한 셰일 가스 저류층 내공극 구조 연구

  • Park, Sun Young (Oil & Gas Research Center, Petroleum & Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ko, Yong-kyu (COXEM Application LAB) ;
  • Choi, Jiyoung (Oil & Gas Research Center, Petroleum & Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Junhee (COXEM Application LAB)
  • 박선영 (한국지질자원연구원 석유해저연구본부 석유가스센터) ;
  • 고용규 ((주)코셈) ;
  • 최지영 (한국지질자원연구원 석유해저연구본부 석유가스센터) ;
  • 이준희 ((주)코셈)
  • Received : 2021.08.22
  • Accepted : 2021.11.24
  • Published : 2021.12.31

Abstract

Studies of pore structure in shale gas reservoirs are essential to increase recovery rates, which is in the spotlight concerning unconventional resources. In this study, the distribution of pores in shale gas reservoir sample were observed using Scanning Electron Microscope Particle Analysis (SELPA), which is appropriate to analyze the distribution of particle or shape for sample in large area. A sample from the A-068 borehole drilled in the Liard Basin was analyzed; calcite is the main mineral. The pore size ranges from tens of nanometers to hundreds of micrometers and the contribution of each pore size to overall sample porosity was determined using SELPA. The distribution of pores was determined by observing the surface in the same area at magnifications of ×1000, ×3000 and ×5000. Pores less than 100 nm were observed at high magnifications and confirm that small-scale pore distribution can be analyzed and identified rapidly using SELPA. The method introduced in this study will be useful to understand pore structures in unconventional reservoirs.

비전통(unconventional) 에너지 자원 중 최근 각광받고 있는 셰일 가스의 회수율을 높이기 위해서는 저류층의 공극 구조 연구가 필수적이다. 본 연구에서는 대면적으로 입자나 형상 분포를 확인 할 수 있도록 개발된 분석 장치인 대면적 자동화 입자 분석 시스템(Scanning Electron Microscope Particle Analysis, SELPA)을 활용하여 셰일 가스 저류층 시료의 공극 분포를 관찰하였다. 본 연구에서는 리아드 분지에서 시추된 A-068 시추공 시료 중 방해석이 주 구성 광물인 시료를 대상으로 연구를 수행하였다. SELPA를 이용하여 시료 내 수십 나노에서 수백 마이크로미터 크기의 공극을 관찰하였고 각 공극의 크기 별 비율을 확인하였다. 같은 영역의 표면을 대상으로 각각 1000배, 3000배, 5000배의 배율로 이미지를 관찰하여 공극의 분포를 확인한 결과 최소 3000배 이상의 배율에서 관찰해야 100 nm 이하의 공극까지 관찰되어 작은 스케일의 공극 분포까지 분석할 수 있는 것이 확인되었다. 본 연구에서 소개된 방법론을 통해 셰일 가스 저류층을 포함한 비전통 자원의 저류층 내공극의 분포를 단시간에 파악할 수 있는 방법론이 확인되었으며 향후 비전통 저류층 내 공극 구조 파악에 활용할 수 있을 것이 기대된다.

Keywords

Acknowledgement

이 연구는 한국지질자원연구원 기초연구사업(GP2021-006)의 지원을 받아 수행되었습니다.

References

  1. Clarkson, C.R., Solano, N., Bustin, R.M., Bustin, A.M.M., Chalmers, G.R.L., He, L., Melnichenko, Y.B., Radlinski, A.P. and Blach, T.P., 2013, Pore structure characterization of North American shale gas reservoirs using USANS/ SANS, gas adsorption, and mercury intrusion. Fuel, 103, 606-616. https://doi.org/10.1016/j.fuel.2012.06.119
  2. Curtis, J.B., 2002, Fractured Shale-Gas Systems. AAPG Bulletin, 86, 1921-1938.
  3. Er, C., Li, Y., Zhao, J., Wang, R., Bai, Z. and Han, Q., 2016, Pore formation and occurrence in the organic-rich shales of the Triassic Chang-7 Member, Yanchang Formation, Ordos Basin, China. Journal of Natural Gas Geoscience, 1, 435-444. https://doi.org/10.1016/j.jnggs.2016.11.013
  4. Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S. and Krooss, B.M., 2012, High-Pressure Methane Sorption Isotherms of Black Shales from The Netherlands. Energy & Fuels, 26, 4995-5004. https://doi.org/10.1021/ef300405g
  5. Goral, J., Andrew, M., Olson, T. and Deo, M., 2020, Correlative core- to pore-scale imaging of shales. Marine and Petroleum Geology, 111, 886-904. https://doi.org/10.1016/j.marpetgeo.2019.08.009
  6. Han, Y., Kwak, D., Choi, S., Shin, C., Lee, Y. and Kim, H., 2017, Pore Structure Characterization of Shale Using Gas Physisorption: Effect of Chemical Compositions. Minerals, 7, 66. https://doi.org/10.3390/min7050066
  7. Hu, G., Pang, Q., Jiao, K., Hu, C. and Liao, Z., 2020, Development of organic pores in the Longmaxi Formation overmature shales: Combined effects of thermal maturity and organic matter composition. Marine and Petroleum Geology, 116.
  8. Hughes, J., 2013, A reality check on the shale revolution. Nature, 494, 307-308. https://doi.org/10.1038/494307a
  9. Jia, A., Hu, D., He, S., Guo, X., Hou, Y., Wang, T. and Yang, R., 2020, Variations of Pore Structure in Organic- Rich Shales with Different Lithofacies from the Jiangdong Block, Fuling Shale Gas Field, SW China: Insights into Gas Storage and Pore Evolution. Energy & Fuels, 34, 12457-12475. https://doi.org/10.1021/acs.energyfuels.0c02529
  10. Kim, J.-W., Bryant, W.R., Watkins, J.S. and Tieh, T.T., 1999, Electron microscopic observations of shale diagenesis, offshore Louisiana, USA, Gulf of Mexico. Geo- Marine Letter, 18, 234-240. https://doi.org/10.1007/s003670050073
  11. King, G.E., 2012, Hydraulic Fracturing 101: What Every Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer Should Know About Estimating Frac Risk and Improving Frac Performance in Unconventional Gas and Oil Wells, SPE Hydraulic Fracturing Technology Conference. All Days.
  12. Klaver, J., Desbois, G., Littke, R. and Urai, J.L., 2015, BIBSEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales. Marine and Petroleum Geology, 59, 451-466. https://doi.org/10.1016/j.marpetgeo.2014.09.020
  13. Klewiah, I., Berawala, D.S., Alexander Walker, H.C., Andersen, P.O. and Nadeau, P.H., 2020, Review of experimental sorption studies of CO2 and CH4 in shales. Journal of Natural Gas Science and Engineering, 73, 103045. https://doi.org/10.1016/j.jngse.2019.103045
  14. Knapp, L.J., Ardakani, O.H., Uchida, S., Nanjo, T., Otomo, C. and Hattori, T., 2020, The influence of rigid matrix minerals on organic porosity and pore size in shale reservoirs: Upper Devonian Duvernay Formation, Alberta, Canada. International Journal of Coal Geology, 227, 103525. https://doi.org/10.1016/j.coal.2020.103525
  15. Li, H., Wani, I.H., Hayat, A., Jafri, S.H.M. and Leifer, K., 2015, Fabrication of reproducible sub-5nm nanogaps by a focused ion beam and observation of Fowler-Nordheim tunneling. Applied Physics Letters, 107, 103108. https://doi.org/10.1063/1.4930821
  16. Liu, Y. and Hou, J., 2019, Investigation on the Potential Relationships between Geophysical Properties and CH4 Adsorption in a Typical Shale Gas Reservoir. Energy & Fuels, 33, 8354-8362. https://doi.org/10.1021/acs.energyfuels.9b01905
  17. Loucks, R.G., Reed, R.M., Ruppel, S.C. and Hammes, U., 2012, Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96, 1071-1098. https://doi.org/10.1306/08171111061
  18. Milliken, K.L., Rudnicki, M., Awwiller, D.N. and Zhang, T., 2013, Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97, 177-200. https://doi.org/10.1306/07231212048
  19. Olson, T., 2016, Imaging Unconventional Reservoir Pore Systems. American Association of Petroleum Geologists.
  20. Park, S.Y., Choi, J. and Lee, H.S., 2020, Surface Milling for the Study of Pore Structure in Shale Reservoirs. Korean Jounal of Mineralogy and Petrology, 33, 1-8.
  21. Ross, D.J.K. and Marc Bustin, R., 2009, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26, 916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
  22. Tang, X., Jiang, Z., Jiang, S. and Li, Z., 2016, Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods. Marine and Petroleum Geology, 78, 99-109. https://doi.org/10.1016/j.marpetgeo.2016.09.010
  23. Wang, Jiang, Jiang, Chang, Zhu, Li and Li, 2019, Full?Scale Pore Structure and Fractal Dimension of the Longmaxi Shale from the Southern Sichuan Basin: Investigations Using FE?SEM, Gas Adsorption and Mercury Intrusion Porosimetry. Minerals, 9, 543. https://doi.org/10.3390/min9090543
  24. Xu, S., Gou, Q., Hao, F., Zhang, B., Shu, Z., Lu, Y. and Wang, Y., 2020, Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: Dominated by lithofacies or preservation condition? Marine and Petroleum Geology, 114, 104211. https://doi.org/10.1016/j.marpetgeo.2019.104211
  25. Yang, F., Ning, Z.F., Wang, Q., Zhang, R. and Krooss, B.M., 2016, Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin, China: Insights to pore development and gas storage mechanism. International Journal of Coal Geology, 156, 12-24. https://doi.org/10.1016/j.coal.2015.12.015
  26. Zhou, S., Yan, G., Xue, H., Guo, W. and Li, X., 2016, 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM. Marine and Petroleum Geology, 73, 174-180. https://doi.org/10.1016/j.marpetgeo.2016.02.033