• Title/Summary/Keyword: 끝단간격

Search Result 22, Processing Time 0.022 seconds

Vortex Flow Analisys around the Floating Body with Vertical Plate (연속부착된 수직평판을 갖는 부유구조물 주위의 와유동 해석)

  • Kim, Ho;Lee, Gyoung-Woo;Cho, Dae-Hwan;Gim, Ok-Sok
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.161-168
    • /
    • 2007
  • In this paper, the floating body with double barriers is introduced with a study on the flow patterns and characteristics in around the floating body by using 2 frame p article tracking method. This paper introduce an analisys method to predict the characteristics of flow around the neighbording fields of Floating Body with double barriers in order to investigate a high performance model. Flow visualization has conducted in a circulating water channel by a high speed camera and etc. Flow phenomena according to velocity distribution and flow separation around the floating body with double barriers were obtained by two-dimensional PIV system.

  • PDF

Effect of Various Parameters on Stress Distribution around Holes in Mechanically Fastened Composite Laminates (기계적으로 체결된 복합재료 평판에서 다양한 인자의 영향에 따른 원공 주위의 응력분포)

  • Choi Jae-Min;Chun Heoung-Jae;Byun Joon-Hyung
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • With the wide applications of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joints have become a very important research area because the joints are often the weakest areas in composite structures. This paper presents an analytical study of the stress distributions in mechanically single-fastened and multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a contact stress analysis are described. A dimensionless stress concentration factor is used to compare the stress distributions in composite laminates quantitatively In the case of single-pin loaded composite laminate, the effects of stacking sequence, the ratio of a hole diameter and the width of a laminate (W/D ratio), the ratio of hole diameter and distance from edge to hole (E/D ratio), friction coefficient and clamping force are considered. In the case of multi-pin loaded composite laminate, the influence of the number of pins, pitch distance, number of rows, row spacing and hole pattern are considered. The results show that P/D ratio and E/D ratio affect more on stress distributions near the hole boundary than the other factors. In the case of multi-pin loaded composite laminate, the stress concentration in the double column case is better than the other cases of multi-pin loaded composite laminate.

Two-dimensional Simulation Study on Optimization of Gate Field Plate Structure for High Breakdown Voltage AlGaN/GaN-on-Si High Electron Mobility Transistors (고내압 전력 스위칭용 AlGaN/GaN-on-Si HEMT의 게이트 전계판 구조 최적화에 대한 이차원 시뮬레이션 연구)

  • Lee, Ho-Jung;Cho, Chun-Hyung;Cha, Ho-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.8-14
    • /
    • 2011
  • The optimal geometry of the gate field plate in AlGaN/GaN-on-Si HEMT has been proposed using two-dimensional device simulation to achieve a high breakdown voltage for a given gate-to-drain distance. It was found that the breakdown voltage was drastically enhanced due to the reduced electric field at the gate corner when a gate field plate was employed. The electric field distribution at the gate corner and the field plate edge was investigated as functions of field plate length and insulator thickness. According to the simulation results, the electric field at the gate corner can be successfully reduced even with the field plate length of 1 ${\mu}m$. On the other hand, when the field plate length is too long, the distance between field plate and drain electrode is reduced below a critical level, which eventually lowers the breakdown voltage. The highest breakdown voltage was achieved with the field plate length of 1 ${\mu}m$. According to the simulation results varying the $SiN_x$ film thickness for the fixed field plate length of 1 ${\mu}m$, the optimum thickness range of the $SiN_x$ film was 200 - 300 nm where the electric field strength at the field plate edge counterbalances that of the gate corner.

Characteristics of lightning Impulse Corona Discharges in SF6/CO2 Mixtures (SF6/CO2혼합기체 중에서 뇌임펄스코로나방전의 특성)

  • Lee, Bok-Hee;Baek, Young-Hwan;Oh, Sung-Kyun;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.85-90
    • /
    • 2006
  • This paper presents experimental results relating to the preliminary breakdown characteristics in $SF_6/CO_2$ gas mixtures under a highly non-uniform electric field. The impulse pre-breakdown developments are investigated by the measurements of corona current and light emission images. As a result, the preliminary breakdown development mechanisms for both the positive and negative polarities were fundamentally same. The first streamer corona was initiated at the tip of needle electrode, and the leaders developed with a stepwise propagation and bridged the test gap. The pause time of leader pulses in the positive polarity was significantly shorter than that in the negative polarity. Also, the time interval between the first streamer corona onset and breakdown in the negative polarity was much longer than that in the positive polarity. The discharge channel path in the positive polarity was zigzag, and the leader channel in the negative polarity was thicker and brighter than that in the positive polarity.

Feasibility test on EDZ detection by using borehole radar survey

  • Cho, Seong-Jun;Kim, Jung-Ho;Son, Jeong-Sul;Kim, Chang-Ryol;Sugn, Nak-Hun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.239-244
    • /
    • 2006
  • Borehole radar reflection surveys were carried out in the horizontal borehole to detect EDZ while constructing the tunnel for the research facility of the nuclear waste disposal in Korea. The horizontal borehole has been bored at a length of 35 m from shelter to be parallel with the tunnel which would be planed. While the tunnel has been constructing with the explosive excavation, the borehole radar reflection surveys carried out 5 times with the interval of 2 or 4 days for monitoring EDZ. The most typical change of the reflection event resulted from the face of the wall of tunnel which had been produced newly by the excavation of the tunnel daily, EDZ has been detected with constructing images of difference between two measurement stages, and also the change of EDZ through the time has been done, which is due to the generation of crack and weakening of the rock strength of the face of the tunnel's wall near previous portion of the face of a blind end of tunnel according to explosive excavation.

  • PDF

Dual Band Printed Monopole Antenna Using Spiral and Meander Structure (스파이럴과 미앤더 구조를 이용한 이중 대역 인쇄형 모노폴 안테나)

  • Cheong, Sae-Han-Sol;Jung, Jin-Woo;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.625-630
    • /
    • 2011
  • In this paper, spiral meander monopole printed antenna for dual band operation in GPS(1.57~1.577 GHz) and WiBro(2.3~2.4 GHz), WLAN(2.4~2.48 GHz) is proposed. Spiral(positive coupling) mounted end of monopole(small current) and meander mounted fed of monopole(big current) for reduce frequency ratio. Bandwidth(-10 dB) of the antenna is measured 130 MHz(1.49~1.62 GHz) in basic resonance frequency and 330 MHz(2.29~2.62 GHz) in harmonic resonance frequency($3{\lambda}_H/4$). The peak antenna gains are measured 2.86 dBi in GPS(1.57 GHz), and 3.49 dBi in WiBro(2.35 GHz), and 3.71 dBi in WLAN(2.44 GHz).

Flow Analysis for Optimal Design of Small Gear Pump (소형 기어펌프 최적화 설계를 위한 유동해석)

  • Lee, Suk-Young;Kim, Seung-Chul
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.88-96
    • /
    • 2015
  • Gear pump has a simple structure high reliability, easy operation and maintenance, widely used as a source of hydraulic system of hydraulic. In general, the gear pump was designed using variety of variables, the variables through the analysis of the mass flow rate and efficiency. In this paper, three-dimensional flow of the gear pump, in order to produce the optimal design of product, analysis was performed by using commercial software ANSYS v15.0 CFX. And then, combination of design parameters selected by ANSYS was carried out to confirm the simulation result. The efficiency and mass flow rate of the gear pump were studied by varying its rotational speed and the clearance between the gear tip and the housing. In the simulation results, as the rotational speed were increased, the average mass flow rate and efficiency increased. Furthermore, as the clearance between the gear tip and the housing was increased, the average mass flow rate and efficiency decreased.

A Study on the Hydrodynamic Performance of High-Speed Vessel with Trim Tab Using Full-Scale CFD Simulation (실선 스케일 CFD 해석 기반 트림 탭이 부착된 고속선의 유체동역학적 성능 분석)

  • Lee, Jonghyeon;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.656-665
    • /
    • 2021
  • In this study, trim tabs were attached to end of stern hull of a small high-speed vessel of length approximately 10 m and Froude number 1.0 to improve resistance performance and passenger comfort. Before computational fluid dynamics (CFD) simulations to assess the performance according to various geometries of the trim tab, the scale effect had been found through a previous study, so full-scale simulations were performed. The trim tab chord length was set to 0.5 %, 1.0 % and 1.5 % of LPP, and its angle to base line was varied in intervals of 5°. It decreased trim by stern and flotation: the greater the angle and length, the greater was the effect. Then it had pressure resistance decreased and shear resistance increased, and reduction ratio of total resistance varied accordingly. The results of this study indicated that the resistance performance was improved about 27 % at optimal running attitude that was the trim by stern about 1.5°.

Optimum Reinforcement Conditions of Large Diameter Reinforcement for Steep Slope of Conventional Railway Embankment under Train Loading (기존선 성토사면 급구배화를 위한 열차 하중 하 대구경 봉상보강재의 최적 보강조건)

  • Kwak, Chang-Won;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.43-50
    • /
    • 2016
  • A reinforcement is required to ensure the structural safety in case of railway embankment excavation under railway load. A large diameter soil nailing with concrete wall is applied as the reinforcement method instead of the conventional soil nailing system. In this study, a series of 3 dimensional numerical analyses are performed to investigate the optimum reinforcement considering 15 different conditions based on the length, lateral spacing, diameter, and inclination of the reinforcement. The interface between soil nail and perimetric grout is considered by means of cohesion, stiffness and perimeter of the grout. 0.3 m of reinforcement diameter is assessed as the most appropriate based on the economical viewpoint though ground displacement decreases with the increase of diameter, however the difference of displacement is negligible between 0.4 m and 0.3 m of diameter. Surface settlement, lateral displacement of wall, and stress of reinforcement are calculated and economic viewpoint to reinforce embankment considered. Consequently, the optimum reinforcement conditions considering those factors are evaluated as 3 m in length, 0.3 m in diameter, 1.5 m in lateral spacing, and 10 degree of inclination angle in the case of 3 m of excavation depth. Additionally, inclined potential failure surface occurs with approximately 60 degrees from the end of nails and the surface settlement and wall lateral displacement are restrained successfully by the large diameter soil nailing, based on the result of shear strain rate.

Evaluation of Uplift Forces Acting on Fastening Systems at the Bridge Deck End Considering Nonlinear Behaviors of the Fastening Systems (체결장치 비선형 거동을 고려한 교량 단부에서의 체결장치 압상력 평가)

  • Yang, Sin Chu;Kim, Hak Hyung;Kong, Jung Sik
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.521-528
    • /
    • 2017
  • In this study, vertical loading tests were conducted to investigate the nonlinear behaviors of the fastening systems that have generally been used in the concrete track of domestic railway lines. Nonlinear load-displacement curve models were derived based on the test results. The uplift forces generated in the fastening systems were evaluated by applying the derived nonlinear models as well as the existing linear models. The influence of the factors on the maximum uplift force of the fastening system was analyzed through a parameter study on the distance between neighboring sleepers, the horizontal distance between the center of the bearing and the nearest fastening system from the deck end, and the height of the bridge girder. From the evaluation results it is known that, for economical track and bridge design, due to deck end deformation, it is necessary to consider the nonlinear behavior of the fastening system in the calculation of the uplift force of the fastening systems.