• 제목/요약/키워드: 깃통과주파수

검색결과 12건 처리시간 0.021초

공기조화 및 냉각시스템의 팬 소음예측 기법 (Fan Noise Prediction Method of Air Conditioning and Cooling System)

  • 이진영;이찬;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1318-1320
    • /
    • 2007
  • Fan noise prediction method is presented for air conditioning and/or cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(Flow Network Modeling) with the flow resistances for flow elements of the system. Based on the fan operation point predicted from the FNM analysis results, the present fan noise model predicts overall sound power, pressure levels and spectrum. The predictions of the flow distribution, the fan operation and the noise level in electronic system by the present method are well agreed with 3-D CFD and actual noise test results.

  • PDF

수위변화에 따른 수직형 펌프의 진동 발생 사례 고찰 (A Case Study on Vibration of Vertical Pumps according to Changing Water Level)

  • 송애희;송진대;김현식;정기철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.274-278
    • /
    • 2012
  • Vertical pumps are structurally weak in terms of vibration because of installed heavy motor on top of the pumps in form of cantilever. So high vibration on top of the pumps can occur with low vibration in the bottom. These vibration problems experienced very frequently. Majority of studies have been related to the unbalance of rotating parts or structural resonance. In this paper, we introduce an unusual case, vibration variation caused by VPF(Vane Passing Frequency) according to water level.

  • PDF

원심압축기의 공력소음에 관한 파라미터 연구 (A Parametric Study of Aerodynamic Noise in Centrifugal Compresso)

  • 선효성;이수갑;이준근
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.129-134
    • /
    • 2005
  • This paper describes the influence of geometric parameters on the noise generation from a centrifugal compressor. From the analysis of noise measurements, it is observed that Blade Passing Frequency noise related to the rotating impeller is more important, and it is focused on the comparison of this discrete frequency noise according to the shape change. Navier-Stokes solver is used to simulate the flow-field of the impeller and the vaned diffuser, and time-dependent pressure data are calculated and Fourier-transformed to perform the near-field noise prediction. The effects of various geometry design variables such as the gap between the impeller and the diffuser, impeller shape variations on the near-field noise distribution are investigated.

원심압축기의 공력소음 저감에 관한 설계연구 Part I : 성능해석 및 소음예측 (A Design Study of Aerodynamic Noise Reduction in Centrifugal Compressor Part I : Performance Analysis and Noise Prediction)

  • 선효성;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.785-791
    • /
    • 2004
  • The objective of this research is to suggest anoise prediction method for a centrifugal compressor. It is focused on the Blade Passing Frequency component which is regarded as the main part of the rotating impeller noise. Navier-Stokes solver is used to simulate the flow-field of the centrifugal compressor, and the time-dependent pressure data are calculated to perform the near-field noise prediction by using Ffowcs Williams - Hawkings formulation. Indirect Boundary Element Method is applied to consider the noise propagation effect. Pressure fluctuations of the inlet and the outlet in the centrifugal compressor impeller are presented and the sound pressure level prediction results are compared with the experimental data.

성능 및 소음특성을 고려한 축류 팬 설계의 전산 체계 (A Computerized Design System of the Axial Fan Considering Performance and Noise Characteristics)

  • 이찬;길현권
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.48-53
    • /
    • 2010
  • A computerized design system of axial fan is developed for constructing 3-D blade geometry and predicting both aerodynamic performance and noise. The aerodynamic blading design of fan is conducted by blade angle distribution, camber line determination, airfoil thickness distribution and blade element stacking along spanwise distance. The internal flow and the aerodynamic performance of designed fan are predicted by the through-flow modeling technique with flow deviation and pressure loss correlations. Based on the predicted internal flow field and performance data, fan noise is predicted by two models for discrete frequency and broadband noise sources. The present predictions of the flow distribution, the performance and the noise level of actual fans are well agreed with measurement results.

배관에 의한 구조진동 진단 및 대책 (A Diagnosis and Solution Case of Structural Vibration caused by Pipe)

  • 이정환;구동식;최병근
    • 동력기계공학회지
    • /
    • 제12권2호
    • /
    • pp.18-22
    • /
    • 2008
  • A few intake stations have vibration problems caused by pipes. The vibration transffered from pipes excites building severely. Therefore, the crack is generated on building wall and people who work at intake station are damaged. In this paper, the vibration is measured and analysis is carried out for pipes at intake station in order to identify the usefulness and effectiveness of the solution proposed for pipe resonance avoidance. According to the result of analysis, the vibration of pipes is reduced by bellows.

  • PDF

진동응답 측정에 의한 이중 벌류트형 양흡입 원심펌프의 동적특성 (Dynamic Characteristics of the Double Volute Double Suction Centrifugal Pump Using Measured Vibration Data)

  • 최복록;박진무
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.500-507
    • /
    • 2000
  • Dynamic forces due to mechanical and hydraulic related causes are always exerted on operating turbomachinery such as centrifugal pumps. To ensure the safety and the reliability of the pump. the magnitudes of the vibration must be kept within an acceptable limit. The focus of this paper is on the identification of the vibration behavior and the quantitative analysis of the hydraulic excitation forces. As the structure becomes more complex finite element analysis is essential to accurately predict the vibration characteristics and the excitation forces, This paper presents an experimental and analytical technique to find and solve to vibration problems in double volute double suction centrifugal pump. Measured vibration data due to the dynamic forces are presented and individual causes are identified, finally excitation forces of the pump are inversely estimated at each frequency on operating conditions.

  • PDF

배관에 의한 구조진동 진단 및 해결 사례 (A diagnosis and solution case of structural vibration caused by pipe)

  • 이정환;구동식;최병근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1371-1374
    • /
    • 2007
  • A few intake stations have vibration problems caused by pipes. The vibration transffered from pipes excites building severely. Therefore, the crack is generated on building wall and people who work at intake station are damaged. In this paper, the vibration is measured and analysis is carried out for pipes at intake station in order to identify the usefulness and effectiveness of the solution proposed for pipe resonance avoidance. According to the result of analysis, bellows is reduced the vibration of pipes.

  • PDF

공기 냉각 시스템의 홴 소음 예측 기법 (Fan Noise Prediction Method of Air Cooling System)

  • 이찬;길현권
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.952-960
    • /
    • 2008
  • Fan noise prediction method is presented for air conditioning, automobile and electronic cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(flow network modeling). Fan noise prediction method comprises two models for the discrete frequency noise due to rotating steady aerodynamic lift and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. Based on the fan operation point predicted from the FNM analysis results and fan design parameters, the present far noise model predicts overall sound pressure level and spectrum. The predictions for the flow distribution, the fan operation and the noise level in air cooling system by the present method are well agreed with 3-D CFD and actual noise test results.

취수장용 펌프 및 배관 진동 분석 사례 (The Analysis of Vibration with Pump and Pipe for Intake Station)

  • 최병근;최창림;김효중;구동식;정한얼
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.200-204
    • /
    • 2005
  • A few intake stations have vibration problems caused by pumps, motors and pipes. The vibration transffered from pumps, motors and pipes excites buiding severely. Therefore, the crack is generated on building wall and people who work at intake station are damaged. In this paper, the vibration and noise have been measured and analyzed for pumps, motors, pipes and building at intake station. Also, the cause of vibration and noise is identified. Finally, the reference of vibration and noise is established using results of measurement.

  • PDF