• Title/Summary/Keyword: 김창용

Search Result 165, Processing Time 0.019 seconds

Design of Fire Source for Railway Vehicles and Measurement of Critical Velocity in Reduced-Scale Tunnels (축소터널 철도차량 화원 설계 및 임계속도 측정연구)

  • Park, Won-Hee;Hwang, Sun-Woo;Kim, Chang-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.59-68
    • /
    • 2020
  • In this study, the authors designed a reduced-scale railway vehicle fire, which was necessary for evaluating the fire safety of railway tunnels using a reduced model. To overcome the shortcomings of the methods used in conventional reduced-scale railway tunnel tests, the authors simulated the fire source of a railway vehicle using a methanol fire source for fire buoyancy, and a smoke cartridge for smoke visualization. Therefore, the heat release mass consumption rates of various methane trays were measured using a cone calorimeter (ISO 5660). The critical ventilation velocity in the railway tunnels was obtained using the designed fire source of the railway vehicle, which was evaluated by the measured temperature at the top of the tunnel as well as laser visualization.

Analysis of Fire Characteristics based on the Thickness and Incident Heat Flux of Wood (합판류 목재의 두께별 입사열유속에 따른 연소특성 비교 연구)

  • Hwang, Sun-Woo;Park, Won-Hee;Kim, Chang-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.13-21
    • /
    • 2020
  • This study tested the wood used in building interiors; each type had various incident heat fluxes based on their thickness. The combustion characteristics measured were effective heat of combustion, heat release rate peak and arrival time, maximum average rate of heat emission, and piloted ignition temperature. The wood specimens used in the experiment were 4.8 to 18 mm thick. 25, 35, 50, and 60 kW/㎡ were applied to the incident heat flux that the wood specimens were exposed to. The wood specimens tested were two types of medium-density fiberboard (each with a different density), treated red pine, particle board, and plywood. A comprehensive comparison of different fire characteristics was conducted to analyze the fire patterns corresponding to each type of wood in this way, the risk of fire was studied. The risk of fire was particularly high for particle board. The results of quantifying the fire characteristics of the types of wood studied could function as important input data with which to calculate the fire load of composite combustibles.

Reliability and Validity of Ultrasound Imaging and sEMG Measurement to External Abdominal Oblique and Lumbar Multifidus Muscles (외복사근과 다열근에 대한 초음파 영상과 표면 근전도 측정방법의 신뢰도와 타당도)

  • Kim, Chang-Yong;Choi, Jong-Duk;Kim, Suhn-Yeop;Oh, Duck-Won;Kim, Jin-Kyung
    • Physical Therapy Korea
    • /
    • v.18 no.1
    • /
    • pp.37-46
    • /
    • 2011
  • The purpose of this study was to investigate intra-rater reliability and determine the validity of electromyography (EMG) measurements to represent muscle activity and ultrasonography (US) to represent muscle thickness during manual muscle testing (MMT) to external abdominal oblique (EO) and lumbar multifidus (MF). Twenty healthy subjects were recruited for this study and asked to perform MMT at differing levels. The subjects' muscle activity using EMG was measured by a ratio to maximum voluntary contraction (MVC) and root mean square (RMS) methods. The subjects' muscle thickness using US was measured by raw muscle thickness and change ratio of thickness to maximum (MVC) or resting condition. In three trials, measurements were performed on each subject by one examiner. The intra-rater reliability of measurements of EMG and US to EO and MF was calculated using intra-class coefficients. The intra-rater reliability of all measurements was excellent (ICC=.75~.98) in EMG and US. The conduct validity was calculated by one-way ANOVA with repeated measurements to compare whether the EMG and US measurements were different between MMT at different levels. There was only a significant difference between all grades at %MVC thickness measurement of US. These results suggest that a %MVC thickness measurement of US was a more sensitive and discriminate in all manual muscle testing grades. This information will be useful for the selection of US measurement and analysis methods in clinics.

Correcting Errors Associated with Blood Urea Measurements Employing Nonaction-Doped Ammonium-Selective Electrodes (암모늄선택성 전극을 이용한 요소센서의 오차보정에 관한 연구)

  • Kim, Young No;Shin, Doo Soon;Kim, Chang Yong;Shin, Jae Ho;Nam, Hakhyun;Cha, Geun Sig
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.12
    • /
    • pp.925-931
    • /
    • 1995
  • Urea sensors, prepared by immobilizing urease on ammonium-selective membrane electrodes doped with nonactin, can show interference from several ionic species present in blood samples (e.g., sodium, potassium, and endogenous ammonium ions). This interference problem does not arise from the immobilized biocatalytic reaction but rather from the innate response of the base transducer to ionic species in the sample. In this work, the use of calibrators containing adequate amounts of ionic species is examined to reduce errors caused by endogenous ionic interferences with blood urea measurements. Simultaneous measurements of the interfering species with additional sensors and subsequent substractions of these values from the urea electrode signals are also described. It is shown that the use of a potassium-selective electrode with an adequate calibrator system greatly enhances the accuracy of the urea sensor measurements.

  • PDF

Changes of Protein Composition and Muscle Tissues in Top Shell Meat during Frozen Storage (바다방석고둥육의 동결저장중 단백질조성과 근육조직의 변화)

  • 송대진;김창용;박환준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.763-770
    • /
    • 1993
  • To investigate the quality changes during frozen storage, top shell, Omphalius pfeifferi capenteri, was stored at -18$^{\circ}C$, -$25^{\circ}C$ and -3$0^{\circ}C$ immediately after shelling and water holding capacity, protein composition and histological features were examined with the lapsed period of the storage. During the storage period, amount of free drip was increased with higher frozen temperature and longer frozen period, but with the longer storage period, the lower water holding capacity was observed. The extractability and composition of muscle protein, sarcoplasmic protein and stroma protein were rather stable regardless of frozen temperature and frozen storage period. However, the extractability of myofibrillar protein was decreased with higher frozen temperature and longer frozen storage period. On the changes of muscle tissue structure, following points were observed. 1) In the muscle tissue structure of fresh sample, fine muscle fiber was closely distributed all over the tissue regardless of cross and longitudinal section. 2) In tissue structure under frozen state, it was observed that ice crystals apparently grew with the higher storage temperature. Empty spaces between muscle bundles which wee formed by aggregations of muscle fiber were observed after 3 months storage at -18$^{\circ}C$ . 3) Tissue structure in thawed state was restored satisfactorily after 1 month storage regardless of storage temperature. After 3 months storage at -3$0^{\circ}C$, muscle tissue was well restored, but at -18$^{\circ}C$, empty spaces were apparent due to incomplete restoration.

  • PDF

The Development of 3-D System for Visualizing Information on Geotechnical Site Investigation (지반조사 정보의 3차원 가시화 시스템 개발)

  • 홍성완;배규진;서용석;김창용;김광염
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.179-188
    • /
    • 2002
  • With improving computer penormance and advancing simulation techniques, a growing number of softwares are being developed for visualization of investigation results in geotechnical problems. It is a very important subject for geological site investigation to understand or predict if there would be any hazardous geological conclition that might cause any increase of construction costs or an extension of construction period. A 3-D (three-climensional) visualization technique may be one of the powerful tools to overcome an uncertainty problem of geologica] site investigatior. The paper describes an overview of a newly developed geotechnical 3-D interpretation system for the purpose of applying the 3-D visualization technique, GIS (geographic information system) and D/B (database) to tunnel design and construction. VR (virtual reality) and 3-D visualization techniques are applied in order to develope the 3-D model of characteristics and structures of rock mass. D/B system for all the materials related to site investigation and tunnel construction is developed using GIS technique. This system is very useful for civil engineers to make a plan of tunnel construction at the design stage and also during construction with the advantage of improving the economy and safety of tunnels.

Numerical Analysis on the Effect of Fractured Zone on the Displacement Behavior of Tunnel (파쇄대가 터널 주변 암반의 변형 거동에 미치는 영향에 대한 수치해석적 연구)

  • Kim Chang-Yong;Kim Kwang-Yeom;Moon Hyun-Koo;Lee Seung-Do;Baek Seung-Han
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.218-231
    • /
    • 2006
  • Anisotropic/heterogeneous rock mass shows various deformation behavior types due to tunnelling because deformation behavior is largely controlled by the spacial characteristics of geological factors such as faults, joints and fractured zone in rock mass. In this paper 2-dimensional numerical analysis on the several influencing factors is performed considering fractured zone located near tunnel. This numerical analysis shows that deformation behavior of tunnel are very different according to the width and the location of fractured zone and supper method. However, 3-dimensional analysis is necessary to consider 3-dimensional geometrical characteristics sufficiently since discontinuity and fractured zone have 3-dimensional geometry. Also flexible design/construction guidelines for tunnelling are required to cope with uncertain ground condition and circumstance for technically safe and economic tunnel construction.

Evaluation of Electric Power Consumption during Seawater Desalination (해수담수 공정의 전력비 평가기준에 관한 연구)

  • Shim, Kyu Dae;Kim, Chang Ryong;Choung, Joon Yeon;Kim, Dong Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.485-492
    • /
    • 2021
  • This study focused on safety aspects surrounding energy consumption in the seawater desalination process in the Daesan Industrial Complex located on the West Sea coast. The safety index for energy consumption was evaluated under different salinities and temperatures of the incoming seawater. Temperature and salinity input data for the 1997-2018 period were obtained from the Marine Environment Information System, and the power required for reverse osmosis (RO) was applied to the program as per the data provided by the RO membrane manufacturer (Q-Plus v3.0). Notably, reasonable energy consumption guidelines were proposed during the design of the desalination facilities; in this regard, the desalination process required approximately 2.10-2.90 kWh/m3 electrical power. Moreover, the energy safety based on 95 % was estimated to be 2.80 kWh/m3 when the desalination facility was operated.

Fire Detection Performance Experiment of the Water Jet Nozzle Position Control Type Automatic Fire Extinguishing Facility for Road Tunnels (도로터널용 방수노즐 위치제어형 자동소화설비의 화재감지성능실험)

  • Kim, Chang-Yong;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.85-91
    • /
    • 2019
  • This study evaluated the fire detection performance of an automatic fire extinguishing system for road tunnels, which combines flame wavelength detection technology with flame image detection technology. This fusion technique to improve the fire detection capability can reduce the damage caused by the fire suppression by locating the fire source in the fire and discharging the pressurized water only at the fire source. Experiments were conducted to determine the position of a fire source when a $70cm{\times}70cm$ target was placed at a distance of 15 m, 20 m, 25 m, 30 m, and 35 m, respectively, in a situation where there is a flame and smoke in a tunnel. The performance of the ultraviolet and triple wavelength infrared (IR3) sensors was attenuated due to the interference of thick smoke. In addition when the flame was blocked by thick smoke, the image sensor sensed the smoke and emitted a fire signal.

Water Jet Experiment of Automatic Fire-tracking Water Cannon Facility combined with Indoor Hydrant Facility in Road Tunnels (도로터널의 옥내소화전설비 겸용 자동화점추적 방수총설비의 방수실험)

  • Kim, Chang-Yong;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • To determine if water-jet nozzle moves and water jetting are effective according to the location of the fire, this study examined the automatic fire-tracking water cannon system and aan indoor hydrant system, such as water jet centered directivity, water jet range maintainability and water jet shape uniformity. First, an examination to find the center of fire accurately from this system design showed that the water jet centered test was accurate. Second, the water jet range test results showed that when water is jetted at the maximum water jet radius, the water jet shows an inaccurate result but within the allowable tolerance range. Finally, the water-jet shape test result confirmed that there are no problems in setting the block from the algorithm design.