DOI QR코드

DOI QR Code

Evaluation of Electric Power Consumption during Seawater Desalination

해수담수 공정의 전력비 평가기준에 관한 연구

  • Received : 2020.11.15
  • Accepted : 2021.05.11
  • Published : 2021.10.01

Abstract

This study focused on safety aspects surrounding energy consumption in the seawater desalination process in the Daesan Industrial Complex located on the West Sea coast. The safety index for energy consumption was evaluated under different salinities and temperatures of the incoming seawater. Temperature and salinity input data for the 1997-2018 period were obtained from the Marine Environment Information System, and the power required for reverse osmosis (RO) was applied to the program as per the data provided by the RO membrane manufacturer (Q-Plus v3.0). Notably, reasonable energy consumption guidelines were proposed during the design of the desalination facilities; in this regard, the desalination process required approximately 2.10-2.90 kWh/m3 electrical power. Moreover, the energy safety based on 95 % was estimated to be 2.80 kWh/m3 when the desalination facility was operated.

본 연구에서는 서해에 위치한 대산산업단지 해수담수화 시설에 필요한 전력비를 계산하고, 해수온도 및 염분도 변화에 따른 안전도를 고려한 전력비 기준을 산정하였다. 입력 자료(온도 및 염분도)는 국가해양환경정보통합시스템(MEIS, Marine Environment Information System) 22년 자료(1997~2018년)를 이용하고, 해수공정에서 사용되는 전력량은 RO막 제조사에서 제공되는 프로그램(Q-Plus v3.0)을 활용하였다. 금회연구에서는 해수담수화 시설물 설계시 합리적인 전력비 운영 가이드라인을 제시했다는데 의의가 있다. 해수담수화 역삼투압 공정은 약 2.10~2.90 kWh/m3의 전력비가 소요되며, 에너지 안전도 95 % 기준으로 2.80 kWh/m3의 전력비가 해수담수화 시설을 운영할 때 고려되어야 하는 것으로 검토되었다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 물관리 연구사업의 지원을 받아 연구되었습니다(과제번호 127557). 본 논문은 2020 CONVENTION 논문을 수정·보완하여 작성되었습니다.

References

  1. ANSI/HI 1.3 (2000). Centrifugal pumps for design and application, American National Standards Institute, pp. 11-21.
  2. ANSI/HI 9.6.3 (1997). Centrifugal and vertical pumps for allowable operating region, American National Standards Institute, pp. 1.
  3. Badruzzaman, M., Voutchkov, N., Weinrich, L. and Jacangelo, J. G. (2019). "Selection of pretreatment technologies for seawater reverse osmosis plants: A review." Desalination, Vol. 449, pp. 78-91. https://doi.org/10.1016/j.desal.2018.10.006
  4. Bernat, X., Gibert, O., Guiu, R., Tobella, J. and Campos, C. (2010). The economics of desalination for various uses, Re-thinking Water and Food Security: Fourth Botin Foundation Water Workshop, CRC Press, Florida, USA, pp. 329-346.
  5. Fritzmann, C., Lowenberg, J., Wintgens, T. and Melin, T. (2007). "State of-the-art of reverse osmosis desalination." Desalination, Vol. 216, No. 1-3, pp. 1-76. https://doi.org/10.1016/j.desal.2006.12.009
  6. Gille, D. (2003). "Seawater intakes for desalination plants." Desalination, Vol. 156, No. 1-3, pp. 249-256. https://doi.org/10.1016/S0011-9164(03)00347-3
  7. Global Water Intelligence (2015). Desalination markets 2016.
  8. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. and Moulin, P. (2009). "Reverse osmosis desalination: water sources, technology, and today's challenges." Water research, Vol. 43, No. 9, pp. 2317-2348. https://doi.org/10.1016/j.watres.2009.03.010
  9. Hashimoto, T., Stedinger, J. R. and Loucks, D. P. (1982). "Reliability, resiliency, and vulnerability criteria for water resources system performance evaluation." Water Resources Research, Vol. 18, No. 1, pp. 14-20. https://doi.org/10.1029/WR018i001p00014
  10. Jamaly, S., Darwish, N. N., Ahmed, I. and Hasan, S. W. (2014). "A short review on reverse osmosis pretreatment technologies." Desalination, Vol. 354, pp. 30-38. https://doi.org/10.1016/j.desal.2014.09.017
  11. Kurihara, M. and Takeuchi, H. (2013). "Mega-ton water system: Japanese national research and development project on seawater desalination and wastewater reclamation." Desalination, Vol. 308, pp. 131-137. https://doi.org/10.1016/j.desal.2012.07.038
  12. K-water (2019). The feasibility and basic plan for SWRO project in Daesan industrial area, pp. 6-155, 6-179, 6-189, 6-192 (in Korean).
  13. Sauvet-Goichon, B. (2007). "Ashkelon desalination plant-A successful challenge, desalination." Desalination, Vol. 203, No. 1-3, pp. 75-81. https://doi.org/10.1016/j.desal.2006.03.525
  14. Suh, S. H., Kim, K. W., Kim, H. H., Yoon, I. S. and Cho, M. T. (2015). "Evaluation of energy saving with vector control inverter driving centrifugal pump system." The KSFM Journal of Fluid Machinery, Vol. 18, No. 2, pp. 67-72 (in Korean). https://doi.org/10.5293/kfma.2015.18.2.067
  15. Villacorte, L.O., Tabatabai, S. A. A., Dhakal, N., Amy, G., Schippers, J. C. and Kennedy M. D. (2014). "Algal blooms: an emerging threat to seawater reverse osmosis desalination." Desalination and Water Treatment, Vol. 55, pp. 2601-2611. https://doi.org/10.1080/19443994.2014.940649
  16. Voutchkov, N. (2010) Desalination engineering: Planning and design, McGraw-Hill, New York, USA, pp. 17, 73, 115.
  17. Voutchkov, N. (2018). "Energy use for membrane seawater desalination - current status and trends." Desalination, Vol. 431, pp. 2-14. https://doi.org/10.1016/j.desal.2017.10.033
  18. Woo, S. W. and Kim, Y. H. (2017). "Reduction of power consumption by variable speed operation of high pressure pump in seawater reverse osmosis desalination plant." The KSFM Journal of Fluid Machinery, Vol. 20, No. 5, pp. 33-39 (in Korean). https://doi.org/10.5293/kfma.2017.20.5.033