• Title/Summary/Keyword: 김대진

Search Result 642, Processing Time 0.043 seconds

스마트폰을 활용한 공학교육

  • An, Tae-Chang;Kim, Dae-Jin;Kim, Jeong-Min
    • Journal of the KSME
    • /
    • v.55 no.1
    • /
    • pp.41-44
    • /
    • 2015
  • 이 글에서는 스마트폰의 하드웨어 및 소프트웨어 앱을 활용한 공학교육의 적용 방안과 교육의 질적 수준 향상 방안에 대해 소개하고자 한다.

  • PDF

Haptic recognition of the palm using ultrasound radiation force and its application (초음파 방사힘을 이용한 손바닥의 촉각 인식과 응용)

  • Kim, Sun Ae;Kim, Tae Yang;Lee, Yeol Eum;Lee, Soo Yeon;Jeong, Mok Kun;Kwon, Sung Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.467-475
    • /
    • 2019
  • A high-intensity ultrasound wave generates acoustic streaming and acoustic radiation forces when propagating through a medium. An acoustic radiation force generated in a three-dimensional space can produce a solid tactile sensation, delivering spatial information directly to the human skin. We placed 154 ultrasound transmit elements with a frequency of 40 kHz on a concave circular dish, and generated an acoustic radiation force at the focal point by transmitting the ultrasound wave. To feel the tactile sensation better, the transmit elements were excited by sine waves whose amplitude was modulated by a 60 Hz square wave. As an application of ultrasonic tactile sensing, a region where tactile sense is formed in the air is used as an indicator for the position of the hand. We confirmed the utility of ultrasonic tactile feedback by implementing a system that provides the number of fingers to a machine by receiving the shape of the hand at the focal point where the tactile sense is detected.

Voltammetric measurements of iron using an infrared photodiode electrode (적외선 광 다이오드를 사용한 철의 전압전류 정량)

  • Ly, Suw Young;June, Young Sam;Lee, Hyun Ku;Kwak, Kyu Ju;Kim, Kun Woo;Kim, Jong Hyoung;Jeong, Ho Young;Kim, Bong Kyun;Chun, Seok Joo;Chang, Jin Won
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.289-295
    • /
    • 2007
  • A simple electric circuit of an infrared photodiode electrode (IPDE) was utilized to monitor iron using square-wave (SW) anodic stripping voltammetry (SV) and cyclic voltammetry (CV). The optimum analytical conditions were determined and were compared with those of common working electrodes. The comparison showed that CV is more sensitive and convenient to use than the common voltammetry methods. At the optimized conditions, the working ranges of 0.1- to 0.8- and 0.85- to 6.0 mg/L iron was obtained. Relative standard deviation of 15 measurements of iron (0.4 mg/L) was 0.09%. The analytical detection limit was found to be $80{\pm}0.6ug/L$, which was applied to iron in waste water.