• Title/Summary/Keyword: 길이변화율시험

Search Result 98, Processing Time 0.039 seconds

The Effect of Hole Size on the Failure Strength and Fracture Toughness in Polymer Matrix Composite Plates (Plastic기 복합재료의 파손강도 및 파괴인성에 미치는 원공크기의 영향)

  • Kim, Jeong-Gyu;Kim, Do-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Abstract The effects of the hole size and the specimen width on the fracture behavior of several fabric composite plates are experimentally investigated in tension. Tests are performed on plain woven glass/ epoxy, plain woven carbon/epoxy and satin woven glass/polyester specimens with a circular hole. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and the specimen width. An excellent agreement is found between the experimental results and the analytical predictions of the modified failure criterion. The notched strength increase with an increase in the damage ratio, which is explained by a stress relaxation due to the formation of damage zone. When the unstable fracture occurred, the critical crack length equivalent for the damage zone is about twice the characteristic length. The critical energy release rate $G_c$ is independent of hole size for the same specimen width. The variation of $G_c$ according to the material system, fiber volume fraction and specimen width relates to the notch sensitivity factor. $G_c$ increases with a decrease in the notch sensitivity factor, which can be explained by a stress relaxation due to the increase of damage zone.

  • PDF

Applicability Evaluation and Development of High Strength Spacer with Plastic Fiber and Slag Cement (플라스틱 섬유재와 슬래그 시멘트를 이용한 고강도 간격재의 개발 및 적용성 평가)

  • Kwon, Seung-Jun;Jo, Hong-Jun;Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2014
  • Spacer is a construction material for maintaining cover depth and steel installation, however several problems like staining, leakage, and cracking are currently issued due to performance degradation and unsatisfactory dimensional stability of spacer. Plastic composite is widely used for prevention of brittle failure in cement based material, which yields improvement of crack resistance and ductile failure. This study is for development and applicability evaluation of high strength spacer with slag cement for environmental load reduction and plastic composite like polypropylene fiber, nylon fiber, and glass fiber. For this work, unit weight of 4 different plastic fibers are evaluated through preliminary tests. Physical tests including compressive, flexural, and tensile strength and durability tests including absorption, permeability, length change, crack resistance, carbonation, and freezing and thawing are performed. Through various tests, optimum plastic fiber is selected and manufacturing system for high strength spacer with the selected fiber is developed. Dimensional stability of the developed spacer is evaluated through field applicability evaluation.

An Experimental Study on the Carbonation and Drying Shrinkage of Concrete Using High Volumes of Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 대량 사용한 콘크리트의 건조수축 및 중성화에 관한 실험적 연구)

  • Ryu, Dong-Woo;Kim, Woo-Jae;Yang, Wan-Hee;Park, Dong-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.393-400
    • /
    • 2012
  • The effect of ground granulated blast-furnace slag (GGBS) and alkaline activator on the properties of setting, compressive strength, drying shrinkage and resistance of carbonation was assessed to develop high volume slag concrete, the GGBS replacement rate of which was more than 80 percent. The changes in the concrete as the replacement rate of GGBS increases were as follows. Initial and final setting time was delayed by two and a half hours, and the compressive strength development properties of concrete in early and long term age were decreased. Drying shrinkage was satisfactory as below $6{\times}10^{-4}$ in every mixture, and yet showed a tangible trend by replacement rate. Carbonation was materially increased. Setting time and early strength development property, however, were extremely advanced by the addition of the alkaline activator. While drying shrinkage was improved by the alkaline activator, resistance to carbonation was not.

Study on the Characteristics of Far Infrared Ray Drying for Rough Rice(I) (벼의 원적외선 건조특성에 관한 연구(I))

  • 김유호;조영길;조광환;이선호;김영민;한충수;이호필
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.355-361
    • /
    • 2002
  • 본 연구에서는 원적외선.열풍 복합건조특성을 구명하기 위하여 건조용량 150-500kg이고, 승강기, 상.하부스크류, 건조실, 템퍼링실, 송풍기 및 가열장치로 구성된 시뮬레이터를 제작하여 건조특성시험을 실시하였다. 그 결과를 요약하면 다음과 같다. 가. 열풍온도에 따른 곡온변화를 시험한 결과 열풍온도 45$^{\circ}C$일 때 곡온 32-33$^{\circ}C$를 유지하였으며, 48, 51$^{\circ}C$일 때는 곡온이 35$^{\circ}C$가 넘어서는 현상을 나타났다. 건조중 곡온이 35$^{\circ}C$를 넘어서게 되면 동할미 발생량이 많아지고 품질저하가 급격히 일어난다. 나. 템퍼링실의 온도편차가 2,5$^{\circ}C$ 정도로 고른 온도분포를 나타내었고, 버너 입구쪽과 템퍼링실 중앙지점에서 온도가 약간 높게 나타났으며, 원적외선방사체 표면온도분포는 열풍온도가 45$^{\circ}C$일 때 평균 17$0^{\circ}C$를 유지하였고, 48$^{\circ}C$, 51$^{\circ}C$일 때 각각 22$0^{\circ}C$, 23$0^{\circ}C$에서 유지하는 것으로 나타났다. 다. 원적외선방사체 길이방향으로 온도편차는 버너를 기준으로 해서 버너쪽에서 멀수록 온도가 높았고, 중간, 근거리 순으로 나타났다. 버너의 원거리쪽에서 온도가 높게 나타난 것은 원적외선방사체를 통과하는 열풍이 빠져나가도록 되어있는 열풍 유동관이 버너 원거리에 위치하고 있어 버너에 불꽃이 점화되면서 열풍이 방사체 끝쪽으로 일시 머물렀다가 배출되기 때문으로 판단된다. 라. 건조기의 송풍량을 요인으로 하여 건조속도와 건조에너지를 비교한 결과 송풍량이 30cmm일 때가 25cmm에서보다 약 33%의 건조속도가 증가되어 송풍량이 많을수록 건조속도가 빨라졌으나, 건조에너지는 1,391kcal/kg.water로 나타나 약 4.2%정도가 더 소요 되었다. 곡물순환속도를 요인으로 하여 비교 시험한 결과 곡물순환속도가 33kg/min일때가 26kg/min보다 약 25%의 건조속도가 증가되어 곡물의 순환속도가 빠를수록 건조속도가 빨라졌으며, 건조에너지도 1,334kcal/kg.water로 비슷하게 소요되었다. 마. 시험구와 대비구의 건감률은 시험구에서 1.08~1.36w.b./h로 나타나 대비구보다 약 9.9~18.3%가 높게 나타났고, 건조에너지는 10.2~14.6%가 절감되었다. 발아율은 열풍온도가 낮을수록 높게 나타났고 시험구가 대비구보다 발아율이 낮게 나타났으며, 동할률 증가량도 원적외선.열풍 복합건조방법이 높게 나타나 이것은 곡물 표면에 원적외선 방사에의한 복사열이 전달되어 열장해를 받았기 때문으로 판단되며, 금후 더 연구하여 적정 열풍온도 및 방사체 크기를 구명해야 할 것이다.

  • PDF

Effects of Crack Velocity on Fracture Properties of Modified S-FPZ Model (수정 특이-파괴진행대이론의 파괴특성에 대한 균열속도의 영향)

  • Yon Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.511-520
    • /
    • 2004
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}$ ( w ) for fracture process zone (FPZ) development. The $f_{ccs}$( w ) relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The variation of strain energy release rate with crack extension can explain theoretically the micro-cracking, micro-crack localization and full development of the FPZ in concrete.

Development of the Environmentally Friendly Filling Material for the Underground Cavities using the Rock-dust and an Assessment on Filling and Material Characteristics (석분토를 이용한 지하공동의 친환경적 충전재 개발과 충전 및 재료특성 평가)

  • Ma Sang-Joon;Kim Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.35-44
    • /
    • 2005
  • Recently, underground cavities such as limestone cavity and abandoned mine give rise to a lot of damage in SOC facilities. But there are many difficult problems such as delay of the working terms and enormous economic losses in finding a new method and changing construction design. In this study, a new filling material for underground cavities was developed using the stone-dust classified as industry waste polluting environment. As a result of test, filling material properties was that a compressive strength was $34{\~}60\;kgf/cm^2$, a change ratio in length was $0.268{\~}0.776\%$ and water absorption was $34.3{\~}46.9\%$. Also as a result of suspended mass test and pH test, it was confirmed that the developed filling material has a characteristic of non-separating in water and it was an environmentally friendly material.

Effect of Replacement of 5~13mm Recycled Coarse Aggregates on Field Applicability of the Concrete through Mock-up Test (목업 시험을 통한 5~13mm 순환 굵은골재 치환 사용이 콘크리트의 현장적용성에 미치는 영향 고찰)

  • Han, Min-Cheol;Song, Young-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 2017
  • The objective of this paper is to investigate experimentally the effect of replacement of recycled coarse aggregates with 5~13mm in size on a field applicability of concretes through Mock-up test. Seven different mock-up specimens were prepared with the size of $1200{\times}800{\times}800mm$ simulating column and wall. For the concrete mixtures, 24MPa, 27MPa and 40MPa of nominal strength were adopted with 30% and 70%(only for 24MPa) of 5~13mm recycled coarse aggregate (RCA) replacement and without 5~13mm RCA(Plain). For test items, slump, slump flow, compressive strength with different curing conditions, core drilling, rebound numbers and drying shrinkage were measured. Test results indicated that 30% of 5~13 mm RCA replacement resulted in increase in slump, slump flow and resistance against segregation, while air contents decreased compared to those of plain mixture. Compressive strength of concrete with 30% of 5~13mm RCA was shown to be higher than that of plain mixture due to optimum packing effect associated with presence of well graded aggregates. Rebound number of the mock-up specimen with 30% of 5~13mm RCA had lower fluctuation according to hitting location than that of plain mock-up specimen. It is believed from the results of the study that replacement of 30% of 5~13mm RCA brings desirable improvement in various aspect of concrete performance due to associated dense packing effect.

A Study on the Autogenous Shrinkage Control of Ultra.High. Strength Concrete -Focused on physical properties and length variation- (초고강도 콘크리트의 자기수축제어에 관한 연구 -물리적 특성과 길이변화율을 중심으로-)

  • Park, Hyun;Han, Da-Hee;Cho, Seung-Ho;Kim, KWang-Ki;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.653-656
    • /
    • 2008
  • As super.high.strength concrete uses a large amount of binder, there is an autogenous shrinkage strain larger than dry shrinkage and it degrades the quality of structures. Thus, we need a technology to minimize the shrinkage strain of super.high.strength concrete. Accordingly, the present study prepared super.high strength concrete with design strength of over 80MPa and, using an embedded gauge, measured the shrinkage strain of free shrinkage specimens for super.high.strength concrete containing expansion agent. According to the results of this study, the expansion rate of concrete increased in the early stage due to the admixture of expansion agent, but the shrinkage rate went down with the lapse of time. The effect of the admixture of expansion agent on compressive strength appeared insignificant. Further research shall be made on different kinds of expansion agents and various mixture ratios for basic analysis to reduce autogenous shrinkage of super.high.strength concrete.

  • PDF

Effects of Magnesium on Sulfate Resistance of Alkali-activated Materials (알칼리 활성화 결합재의 황산염 침식에 미치는 마그네슘의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Ra, Jung-Min;Kim, Hyung-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.109-116
    • /
    • 2017
  • This paper describes the investigation into the durability alkali-activated materials(AAM) mortar and paste samples manufactured using fly-ash(FA) and ground granulated blast furnace slag(GGBFS) exposed to a sulfate environment with different GGBFS replace ratios(30, 50 and 100%), sodium silicate modules($Ms[SiO_2/Na_2O]$ 1.0, 1.5 and 2.0). The tests involved immersions into 10% sodium sulfate solution($Na_2SO_4$), 10% magnesium sulfate solution($MgSO_4$), 10% magnesium nitrate solution($Mg(NO_3)_2$) and 5% magnesium nitrate($Mg(NO_3)_2$+5% sodium sulfate solution+$Na_2SO_4$). The evolution of compressive strength, weight, length expansion and microstructural observation such as x-ray diffraction were studied. As a results, in case of immersed in $Na_2SO_4$, $Mg(NO_3)_2$ and $Mg(NO_3)_2+Na_2SO_4$ shows increase in long-term strength. However, for samples immersed in $MgSO_4$, the general observation was that the compressive strength decreased after immersion. The most drastic reduction of compressive strength and expansion of weight and length occurred when GGBFS or Ms ratios were higher. Also, the XRD analysis of samples immersed in magnesium sulfate indicated that expansion of AAM caused by gypsum($CaSO_4{\cdot}2H_2O$) and brucite(MgOH). The results showed that, an additional condition $Mg^{2+}$ in which ${SO_4}^{2-}$ is the presence of a certain concentration, sulfate erosion has to be accelerated.

Effect of Powder Hardening Accelerator on the Physical Properties of Precast Concrete (분말형 경화촉진제를 혼입한 PC부재용 콘크리트의 기초특성에 관한 실험적 연구)

  • Jun, Woo-Chul;Seo, Hwi-Wan;Bae, Yeoun-Ki;Park, Hee-Gon;Min, Tae-Beom;Kwon, Yeong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.265-271
    • /
    • 2015
  • This study is intended to produce a PC (Precast Concrete) member without a steam curing process in developing the high early strength concrete satisfying the condition of 10MPa in compressive strength at the age of 6 hours, and is intended to ensure economic feasibility by increasing the turnover rate of concrete form. Hence, high early strength cement with high $C_3S$ content and the hardening accelerator of powder type accelerating the hydration of $C_3S$ was used. And the properties of concrete were evaluated according to the hardening accelerator mixing ratio (0, 1.2, 1.6, 2.0). No big difference was found from the tests of both slump and air content. When 1.6 % or higher amounts of the hardening accelerator were mixed, the compressive strength of 10MPa was achieved at the age of 6 hours. From the test results of autogenous (drying) shrinkage and plastic shrinkage, it can be seen that there was a difference according to hydration reaction rate due to the addition of the hardening accelerator. However, it was shown that no problem arose with crack and durability. And it was shown that resistance to freezing-thawing, carbonation, and penetration were excellent.