• Title/Summary/Keyword: 기후 적응

Search Result 574, Processing Time 0.023 seconds

Construction of Genetic Linkage Map and Identification of Quantitative Trait Loci in Populus davidiana using Genotyping-by-sequencing (Genotyping-by-sequencing 기법을 이용한 사시나무(Populus davidiana) 유전연관지도 작성 및 양적형질 유전자좌 탐색)

  • Suvi Kim;Yang-gil Kim;Dayoung Lee;Hye-jin Lee;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.40-56
    • /
    • 2023
  • Tree species within the Populus genus grow rapidly and have an excellent capacity to absorb carbon, conferring substantial ability to effective purify the environment. Poplar breeding can be achieved rapidly and efficiently if a genetic linkage map is constructed and quantitative trait loci (QTLs) are identified. Here, a high-density genetic linkage map was constructed for the control pollinated progeny using the genotyping-by-sequencing (GBS) technique, which is a next-generation sequencing method. A search was also performed for the genes associated with quantitative traits located in the genetic linkage map by examining the variables of height and diameter at root collar, and resilience to insect damage. The height and diameter at root collar were measured directly, while the ability to recover from insect damage was scored in a 4-year-old breeding population of aspen hybrids (Odae19 × Bonghyeon4 F1) established in the research forest of Seoul National University. After DNA extraction, paternity was confirmed using five microsatellite markers, and only the individuals for which paternity was confirmed were used for the analysis. The DNA was cut using restriction enzymes and the obtained DNA fragments were prepared using a GBS library and sequenced. The analyzed results were sorted using Populus trichocarpa as a reference genome. Overall, 58,040 aligned single-nucleotide polymorphism (SNP) markers were identified, 17,755 of which were used for mapping genetic linkages. The genetic linkage map was divided into 19 linkage groups, with a total length of 2,129.54 cM. The analysis failed to identify any growth-related QTLs, but a gene assumed to be related to recovery from insect damage was identified on linkage group (chromosome) 4 through genome-wide association study.

Floristic Study of Sangwangsan Mt. and Its Adjacent Areas(Wando-gun) (완도 상왕산 일대의 식물상 연구)

  • Gwang-Il Kim;Chan-jin Oh;Sun-jin Lee;Soon-Ho Shin;Kyoung-Pae Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.2
    • /
    • pp.100-139
    • /
    • 2023
  • This study was intended to identify the distribution and characteristics of plants such as native plants, rare plants, and endemic plants through a flora survey in Sangwangsan Mt. (644m), Wando-gun, Jeollanam-do, a group habitat of warm temperate forests in Korea, and use the data for the conservation of plant species diversity and the study of climate and distribution changes in warm-temperate forests. A total of 32 field surveys were conducted from 2018 to 2022. The survey identified 785 taxa, including 8 forms, 53 varieties, 16 subspecies, 708 species, 473 genera, and 132 families. The endangered wild plants designated by the Ministry of Environment included 6 taxa: Woodwardia japonica, Metanarthecium luteoviride, Bulbophyllum inconspicuum, Dendrobium moniliforme, Pelatantheria scolopendrifolia, and Cymbidium macrorhizon. Rare plants designated by the Korea Forest Service were identified as 26 taxa. The red list designated by the Korea National Arboretum was identified as 7 taxa, the red list designated by the Ministry of Environment was identified as 29 taxa, and endemic plants in Korea were identified as 17 taxa. Floristic target species in Korea were identified as 200 taxa, specifically 6 taxa of grade V, 13 taxa of grade IV, 73 taxa of grade III, 29 taxa of grade II, and 79 taxa of grade I. Naturalized plants were identified as 73 taxa, and invasive alien plants were identified as 6 taxa. Target plants adaptable to climate change in Korea were identified as 55 taxa, specifically 8 taxa of endemic plants, 46 taxa of southern plants, and 1 taxon of northern plants.

Cold Pressor Response to Seasonal Variation in Winter and Summer (국소한냉자극이 전신 및 국소혈액순환에 미치는 영향 -제 2 보 : 동계 및 하계의 계절변화에 따른 한냉반응-)

  • Park, Won-Gyun;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 1983
  • A possibility whether the appearance of adaptation to cold climate during winter could occur or not in Taegu area was evaluated by comparing the data obtained in winter with that obtained by the same method in summer. Circulatory response was induced by the immersion of one hand in the cold water. The systemic and local responses in the blood circulation from the immersed hand and the unimmersed opposite hand were observed simultaneously. In addition Galvanic skin resistance(GSR) that is influenced by the activity of autonomic nervous system and the vascular tonicity was recorded. The experiment was performed by examining sixty healthy college students in winter and fifty in summer, whose mean age was 21.0, mean weight $60.6{\pm}0.90\;kg(male)$ and $48.3{\pm}0.98\;kg(female)$. The cold stimulus was applied by immersing the left hand into the cold water of $5^{\circ}C$ for 3 minutes, and the response was observed on immersed left hand and unimmersed right hand simultaneously. The observation was made through determining mean blood pressure, heart rate, amplitude of photoelectric capillary pulse (APCP) and GSR. The results obtained are as follows: The mean blood pressure was elevated during the cold stimulation. The increase of blood pressure in summer was more remarkable than in winter. At the recovery period the blood pressure was decreased to the control level in winter but the decrease below the control level was observed in summer. The increase of heart rate in summer was more remarkable than in winter during the cold stimulation. At the recovery period heart rate in both winter and summer was decreased below the control level. During the cold stimulation the APCP was decreased on both hands in winter. However it was more prominent on left hand indicating additional direct cold effect on immersed hand. In summer, the decrease of APCP during immersion was less remarkable than that in winter, but the regain of APCP was faster than that in winter at the recovery period. And the prompt increase of APCP over the control level has been obtained at the 3 minutes of the recovery period. The GSR was remarkably increased on immersed hand but slightly decreased on unimmersed opposite hand during the cold stimulation. Thus the finding on immersed hand indicates that the local direct effect of cold water is more prominent than the systemic effect, where as the finding on unimmersed hand indicates that the circulatory response to painful stress elicited by the cold stimulation is more prominent than cold temperature itself. In summary, it seems that the systemic circulatory response to the local cold stimulation of the one hand is arised more from the secondary elicited pain sensation and less from the low water temperature. On the contrary to the report of Kim et $al^{39)}$, the adaptation phenomena in blood pressure to the relatively mild cold climate in winter was not observed in this study. The difference of circulatory response observed in this study between winter and summer may be due to the difference of the magnitude of subjective sensation of the cold water stimulation by the seasonal changes in air temperature.

  • PDF

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Effects of Atmospheric factors on Local Adaption Rearing Test Results of Superior Breeding Combination of Silkworms (기상요소가 누에 우량교배조 지역적응시험의 작황에 미치는 영향)

  • Sohn, Bong-Hee;Kang, Pil-Don;Ryu, Kang-Sun;Jung, I-Yeon;Kim, Yong-Soon;Kim, Kee-Young;Kim, Mi-Ja
    • Journal of Sericultural and Entomological Science
    • /
    • v.49 no.2
    • /
    • pp.51-55
    • /
    • 2007
  • Investigation of atmospheric data and rearing results was conducted to analyze the effects of atmospheric factors such as temperature and precipitation on silkworm in 8 rearing places in which local adaptation test was being conducted with different mulberry growth condition, soil and atmosphere during spring and autumn rearing season of 2006. The atmospheric characteristics of spring rearing time are as follows. The average temperatures of young silkworm, old silkworm, mounting were $17.7^{\circ}C$, $19.8^{\circ}C$, $21.5^{\circ}C$ respectively, and $1^{\circ}C$ higher than normal year. The precipitation of young silkworm, old silkworm, mounting were 15.1 mm, 6.9 mm, 7.0 mm, respectively, and 22.9 mm lower than normal year in old silkworm and mounting. The daylight hours in larval stage was 1.7 hour shorter than normal year, but no difference in mounting. Thus precipitation was lower and temperature was higher than normal year in 2006. The rearing results of 2006 were 1 kg lower than normal year in cocoon yields per 10,000 3 rd molted larvae, single cocoon weight and cocoon shell percentage were a little higher. The atmospheric characteristics of spring rearing season are as follows. The average temperatures of young silkworm, old silkworm, mounting were $25.1^{\circ}C$, $20.5^{\circ}C$ and $19.9^{\circ}C$ respectively, temperature in young silkworm was $1^{\circ}C$ higher than normal year, and temperature in old silkworm was $1.3^{\circ}C$ lower than normal year. The precipitation of young silkworm, old silkworm, mounting were 110.2 mm, 4.6 mm, 3.7 mm, respectively and there were little differences compared to normal year. The atmospheric condition of 2006 which was similar to normal year did not affect the autumn rearing results of 2006. Namely, the single cocoon weight and cocoon shell weight were not different from normal year, and the same was cocoon shell percentage.

A Thermal Time-Driven Dormancy Index as a Complementary Criterion for Grape Vine Freeze Risk Evaluation (포도 동해위험 판정기준으로서 온도시간 기반의 휴면심도 이용)

  • Kwon, Eun-Young;Jung, Jea-Eun;Chung, U-Ran;Lee, Seung-Jong;Song, Gi-Cheol;Choi, Dong-Geun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.

Study on the Characteristics of Cultivation Period, Adaptive Genetic Resources, and Quantity for Cultivation of Rice in the Desert Environment of United Arab Emirates (United Arab Emirates 사막환경에서 벼 재배를 위한 재배기간, 유전자원 및 수량 특성 연구)

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myoung-Goo;Kim, Jun-Hwan;Kim, Jae-Hyeon;Jung, Kang-Ho;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Kwang-Seung;Suh, Jung-Pil;Jung, Ki-Yuol;Lee, Jae-Su;Choi, In-Chan;Yu, Seung-hwa;Choi, Soon-Kun;Lee, Seul-Bi;Lee, Eun-Jin;Lee, Choung-Keun;Lee, Chung-Kuen
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.133-144
    • /
    • 2022
  • This study was conducted to investigate the cultivation period, adaptive genetic resources, growth and development patterns, and water consumption for rice cultivation in the desert environment of United Arab Emirates (UAE). R esearch on rice cultivation in the desert environment is expected to contribute to resolving food shortages caused by climate change and water scarcity. It was found that the optimal cultivation period of rice was from late November to late April of the following year during which the low temperature occurred at the vegetative growth stage of rice in the UAE. Asemi and FL478 were selected to be candidate cultivars for temperature and day-length conditions in the desert areas as a result of pre-testing genetic resources under reclaimed soil and artificial meteorological conditions. In the desert environment in the UAE, FL478 died before harvest due to the etiolation and poor growth in the early stage of growth. In contrast, Asemi overcame the etiolation in the early stage of growth, which allowed for harvest. The vegetative growth phases of Asemi were from early December to early March of the following year whereas its reproductive growth and ripening phases were from early March to late March and from late March to late April, respectively. The yield of milled rice for Asemi was 763kg/10a in the UAE, which was about 41.8% higher than that in Korea. Such an outcome was likely due to the abundant solar radiation during the reproductive growth and grain filling periods. On the other hand, water consumption during the cultivation period in the UAE was 2,619 ton/10a, which was about three times higher than that in Korea. These results suggest that irrigation technology and development of cultivation methods would be needed to minimize water consumption, which would make it economically viable to grow rice in the UAE. In addition, select on of genetic resources for the UAE desert environments such as minimum etiolation in the early stages of growth would be merited further studies, which would promote stable rice cultivation in the arid conditions.

The effect of three different water temperatures in our research facility on Huanren brown frog (Rana huanrensis) egg's hatching rate, hatching periods, and larvae's growth (인위적으로 조성한 세 가지 수온이 계곡산개구리(Rana huanrensis) 알의 부화율, 부화기간 및 유생의 생장에 미치는 영향 연구)

  • Na, Sumi;Shim, Jeong-eun;Kim, Hyun-jung;An, Chi-Kyung;Yi, Hoonbok
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.320-324
    • /
    • 2015
  • This study was executed to know the effect of three differently controlled temperature conditions on Huanren brown frog (Rana huanrensis )'s growth in 2013. We've collected nine Huanren brown frog egg's sacs on Mt. Surak ($37^{\circ}40^{\prime}55.86^{{\prime}{\prime}}N$, $127^{\circ}05^{\prime}19.99^{{\prime}{\prime}}E$) in Seoul. We put those nine egg sacs in the controlled growth chambers under low temperature (LT, $5{\pm}2^{\circ}C$), medium temperature (MT, $10{\pm}2^{\circ}C$), and high temperature (HT, $13{\pm}2^{\circ}C$) conditions with three egg sacs, respectively. We measured the eggs' hatching rate, their hatching periods, and the size of the hatched individuals. The hatching rate was higher in MT (95.6%) and the rates of the other treatments were relatively lower but very similar such as LT (82.2%) and HT (82.6%). The three hatching periods were 10 days at HT, 14 days at MT and 23 days at LT. The body sizes of the hatched individuals were biggest at MT ($7.62{\pm}0.11mm$), smallest at LT ($6.82{\pm}0.10mm$) and medium at HT ($7.19{\pm}0.15mm$) (P-value ${\leq}0.0001$). From our results, we found that the various water temperatures could be very effective to Huanren brown frog eggs' hatch and growth including their body sizes. We suggest if we study more about the growth of Huanren brown adult frogs under similar temperature conditions for a long term period, it must be very helpful for conservation study about metamorphosis rate and size of adult frog as well as we could understand about the amphibians who are adapting to the climate change.

Effects of Pot Raising Seedling in Extremely Late Seasonal Cultivation for the Increase of Rice Production (기후변화 대응 벼 극만기 재배에서 벼 생산성 향상을 위한 폿트육묘 재배 효과)

  • Ku, Bon-Il;Choi, Min-Kyu;Kang, Shin-Ku;Park, Tae-Seon;Kim, Young-Doo;Park, Hong-Kyu;Kim, Bo-Kyong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.441-448
    • /
    • 2012
  • This study was carried out to evaluate the productivity of rice cultivation in extremely late season in Korea and to confirm the effects of pot-raising seedling culture in this case by assessing the growth and yield performance of rice cultivars that are well adapted to late culture. Suitable cultivars for extremely late culture should not have premature heading habit when transplanted around late July and also secure appropriate growth duration before heading. Geumobyeo 1 and Manjongbyeo showed small decrease in the emerged leaves in transplanting in late July or early August and heading occurred at the same time relatively without premature heading. At transplanting from late July to early August in extremely late rice cultivation, ripening was relatively good until transplanting on August 5. At transplanting on July 30, accumulated temperature from heading to the first frost was $853^{\circ}C$ and ripening was good enough. However, heading was delayed by low temperature at transplanting on August 10 and ripening was very poor due to low accumulated temperature of below $800^{\circ}C$, causing drastic decrease of rice yield. The rice yield increased in transplanting with pot seedling, especially the effects of pot seedling was higher in Geumobyeo 1, but panicle number was not enough to secure rice yield owing to short growth duration. In order to cultivate rice in extremely late season, we should select adaptive rice cultivars that have suitable growth duration and excellent ripening in low temperature. Here, pot-seedling did a great role to secure early growth and bigger growth amounts.

Optimum Grain Filling Temperature for Yield Improvement of Rice Varieties Originated from High-Altitude Areas (고위도 지역 재배 벼 품종의 수량 향상을 위한 등숙적온 분석)

  • Yang, Woonho;Kang, Shingu;Choi, Jong-Seo;Park, Jeong-Hwa;Kim, Sukjin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.182-191
    • /
    • 2020
  • A field test and a phytotron study were performed over two years to examine whether rice varieties originated from higher altitude areas have lower optimum grain filling temperatures for yield improvement than the varieties from South Korea. Three varieties originated from North Korea and three varieties from northern China were compared to the same number of varieties from South Korea. In a field study, the optimum grain filling temperatures over 40 days after heading were 22.6 - 23.0℃, 21.5 - 22.3℃, and 21.5 - 23.6℃ for the varieties from North Korea, northern China, and South Korea, respectively, resulting in no significant difference among varietal groups. Meanwhile, the heading dates of the early maturing varieties from North Korea and China were 7 - 12 days earlier than that of the early maturing Odae variety from South Korea during the first transplant of 2017. The phytotron study, in which different temperature regimes were imposed from flowering/fertilization to harvest with constant daily mean temperatures, revealed that milled rice weight did not decrease under low temperatures, even at 16℃, compared to that at 22℃. At the fourth transplant in the field study, mean temperature lower than 10℃ appeared before rice grains were fully developed, resulting in yield reductions. It was concluded that rice varieties adaptable to high-altitude areas do not have lower optimum grain filling temperatures but, instead, possess shorter growth durations. It was further suggested that the optimum grain filling temperature of rice observed under natural conditions could be attributed to the lowering temperature at the late filling stage under temperate climatic conditions.