DOI QR코드

DOI QR Code

The effect of three different water temperatures in our research facility on Huanren brown frog (Rana huanrensis) egg's hatching rate, hatching periods, and larvae's growth

인위적으로 조성한 세 가지 수온이 계곡산개구리(Rana huanrensis) 알의 부화율, 부화기간 및 유생의 생장에 미치는 영향 연구

  • Na, Sumi (Department of Bio & Environmental Technology, Seoul Women's University) ;
  • Shim, Jeong-eun (Department of Bio & Environmental Technology, Seoul Women's University) ;
  • Kim, Hyun-jung (Department of Biology, Graduate School of Seoul Women's University) ;
  • An, Chi-Kyung (Department of Biology, Graduate School of Seoul Women's University) ;
  • Yi, Hoonbok (Department of Bio & Environmental Technology, Seoul Women's University)
  • 나수미 (서울여자대학교 생명환경공학과) ;
  • 심정은 (서울여자대학교 생명환경공학과) ;
  • 김현정 (서울여자대학교 대학원 생물학과) ;
  • 안치경 (서울여자대학교 대학원 생물학과) ;
  • 이훈복 (서울여자대학교 생명환경공학과)
  • Received : 2015.07.13
  • Accepted : 2015.08.28
  • Published : 2015.08.31

Abstract

This study was executed to know the effect of three differently controlled temperature conditions on Huanren brown frog (Rana huanrensis )'s growth in 2013. We've collected nine Huanren brown frog egg's sacs on Mt. Surak ($37^{\circ}40^{\prime}55.86^{{\prime}{\prime}}N$, $127^{\circ}05^{\prime}19.99^{{\prime}{\prime}}E$) in Seoul. We put those nine egg sacs in the controlled growth chambers under low temperature (LT, $5{\pm}2^{\circ}C$), medium temperature (MT, $10{\pm}2^{\circ}C$), and high temperature (HT, $13{\pm}2^{\circ}C$) conditions with three egg sacs, respectively. We measured the eggs' hatching rate, their hatching periods, and the size of the hatched individuals. The hatching rate was higher in MT (95.6%) and the rates of the other treatments were relatively lower but very similar such as LT (82.2%) and HT (82.6%). The three hatching periods were 10 days at HT, 14 days at MT and 23 days at LT. The body sizes of the hatched individuals were biggest at MT ($7.62{\pm}0.11mm$), smallest at LT ($6.82{\pm}0.10mm$) and medium at HT ($7.19{\pm}0.15mm$) (P-value ${\leq}0.0001$). From our results, we found that the various water temperatures could be very effective to Huanren brown frog eggs' hatch and growth including their body sizes. We suggest if we study more about the growth of Huanren brown adult frogs under similar temperature conditions for a long term period, it must be very helpful for conservation study about metamorphosis rate and size of adult frog as well as we could understand about the amphibians who are adapting to the climate change.

본 연구는 지구 온난화로 인해 상승하고 있는 수온이 계곡산개구리에게 미치는 영향을 알아보기 위해 진행되었다. 이를 위해 서울에 위치한 수락산 일대($37^{\circ}40^{\prime}55.86^{{\prime}{\prime}}N$, $127^{\circ}05^{\prime}19.99^{{\prime}{\prime}}E$)에서 계곡산개구리 난괴를 채집하였다. 총 9개의 난괴를 채집하였으며 3개의 그룹으로 나누어 각각의 인큐베이터에 LT ($5{\pm}2^{\circ}C$), MT ($10{\pm}2^{\circ}C$), HT ($13{\pm}2^{\circ}C$)로 온도를 달리하여 사육하였다. 각각의 실험군 LT ($5{\pm}2^{\circ}C$), MT ($10{\pm}2^{\circ}C$), HT ($13{\pm}2^{\circ}C$)은 모든 유생이 부화 할 때까지 실험이 진행되었으며 각각의 난괴에서 부화한 개체의 부화율과 부화일수, 개체의 크기를 측정하였고 통계분석을 통해 온도가 유생의 발달에 미치는 영향을 분석 하였다. 유생의 부화율은 MT ($10{\pm}2^{\circ}C$)일 때 95.6%로 가장 높았고 HT ($13{\pm}2^{\circ}C$)일 때 82.6%, LT ($5{\pm}2^{\circ}C$)일 때 82.2%로 비슷한 수치가 나왔다. 유생의 부화일수는 HT ($13{\pm}2^{\circ}C$)그룹이 10일로 가장 짧았으며, MT ($10{\pm}2^{\circ}C$)그룹은 14일, LT ($5{\pm}2^{\circ}C$) 그룹은 23일이었다. 실험 결과, 부화 개체의 크기는 MT ($10{\pm}2^{\circ}C$)일 때 $7.62{\pm}0.11mm$, HT ($13{\pm}2^{\circ}C$)일 때 $7.19{\pm}0.15mm$, LT ($5{\pm}2^{\circ}C$)일 때 $6.82{\pm}0.10mm$ 순으로 작아졌다(ANOVA, p-value =0.00000). 본 연구를 통해 개구리의 성장과 부화에는 최적온도가 존재할 것이라 예상되었고, 지구온난화로 인한 온도의 변화는 계곡산 개구리에 부화와 성장에 영향을 미칠수 있음이 확인되었다. 본 연구를 통해 도출한 결과를 바탕으로 더 나아가 온도 구배 상황에서 계곡산개구리 성체까지의 변태율과 크기에 미치는 영향에 대한 실험을 진행한다면 기후 변화에 적응하는 개체군에 대한 이해뿐만이 아니라 추후 멸종위기종 보존대책 등에 대한 연구에 큰 도움을 줄 것으로 기대된다.

Keywords

References

  1. Bachmann, K (1969). Temperature adaptations of amphibian embryos, American Naturalist, 103(930), pp. 115-130. https://doi.org/10.1086/282588
  2. Berven, KA, Gill, DE and Smith-Gill, SJ (1979). Counter-gradient selection in the green frog, Rana calamitans, Evolution, 33(2), pp. 609-623. https://doi.org/10.2307/2407784
  3. Blaustein, AR (1994). Chicken Little or Nero's fiddle? A perspective on declining amphibian populations, Herpetologica, 50(1), pp. 85-97.
  4. Blaustein, AR and Wake, DB (1990). Declining amphibian populations: A global phenomenon?, Trends in Ecology and Evolution, 5(7), pp. 203-204. https://doi.org/10.1016/0169-5347(90)90129-2
  5. Blaustein, AR, Walls, SC, Bancroft, BA, Lawler, JJ, Searle, CL and Gervasi, SS (2010). Direct and Indirect Effects of Climate Change on Amphibian Populations, Diversity, 2(2), pp. 281-313. https://doi.org/10.3390/d2020281
  6. Carey, C and Bryant, CJ (1995). Possible interrelations among environmental toxicants, amphibian development and decline of amphibian populations, Environmental Health Perspectives, 103(4), pp. 13-17. https://doi.org/10.1289/ehp.95103s113
  7. Cleland, EE, Chiariello, NR, Loarie, SR, Mooney, HA and Field, CB (2006). Diverse responses of phenology to global changes in a grassland ecosystem, Proceedings of the National Academy of Sciences, 103(37), pp. 13740-13744. https://doi.org/10.1073/pnas.0600815103
  8. Dorcas, ME, Hopkins, WA, Roe, JH and Douglas, ME (2004). Effects of body mass and temperature on standard metabolic rate in the eastern Diamondback rattlesnake (Crotalus adamanteus), Journal Information, Copeia, pp. 145-151.
  9. Fry, AE (1972). Effects of temperature on shortening of isolated Rana pipiens tail tips, Journal of Experimental Zoology, 180(2), pp. 197-207. https://doi.org/10.1002/jez.1401800207
  10. Han, SH and Kim, HT (2010). Frog Sounds of Korea, Ilgongyuk Publisher. [Korean Literature]
  11. Hansen, J, Sato, M, Ruedy, R, Lo, K, Lea, DW and Medina-Elizade, M (2006). Global temperature change, Proceedings of the National Academy of Sciences, 103(39), pp. 14288-14293. https://doi.org/10.1073/pnas.0606291103
  12. Hwang, IH, Sime, JE, Kim, HJ, An, CK, Hong, SG and Yi, HB (2014). The effect of three different water temperatures on Korea Salamander (hynobius leechii) larvae's growth, Restoration Ecology Institute, 4(1), pp. 1-7
  13. Kim, JC. (2011). Red Data Book of Endangered Amphibians and Reptiles in Korea, National Institute of Biological Resources. [Korean Literature]
  14. Kollros, JJ. (1961). Mechanisms of amphibian metamorphosis: hormones, American Zoologist, 1(1), pp. 107-114. https://doi.org/10.1093/icb/1.1.107
  15. Kuramoto, Y and Tsuzuki, T (1976). Persistent Propagation of Concentration Waves In Dissipative Media Far from Thermal Equilibrium, Progress of Theoretical Physics, 55(2), pp. 0054-0687.
  16. Lee, JH, Jang, HJ and Hwa, SJ (2011). Ecological guide book of Herpetofauna in Korea, National Institute of Biological Resources. [Korean Literature]
  17. Pettus, D and Angleton, GM (1967). Comparative reproductive biology of montane and piedmont chorus frogs, Evolution, 21(3), pp. 500-507. https://doi.org/10.2307/2406611
  18. Raffel, TR, Rohr, JR, Kiesecker, JM and Hudson, PJ (2006). Negative effects of changing temperature on amphibian immunity under field conditions, Functional Ecology, 20(5), pp. 819-828. https://doi.org/10.1111/j.1365-2435.2006.01159.x
  19. Semlitsch, RD and Gibbons, JW (1985). Phenotypic variation in metamorphosis and paedomorphosis in the salamander Ambystoma talpoideum, Ecology, 66(4), pp. 1123-1130. https://doi.org/10.2307/1939164
  20. Shoemaker, VH, Hillman, SS, Hillyard, SD, Jackson, DC, McClanahan, LL, Withers, PC and Wygoda, ML (1992). Exchange of water, ions, and respiratory gases in terrestrial amphibians, Environmental physiology of the amphibians, pp. 125-150.
  21. Stuart, SN, Chanson, JS, Cox, NA, Young, BE, Rodrigues, ASL, Fischman DL and Waller, RW (2004). Stratus and trends of amphibian declines and extinctions worldwide, Science, 306(5702), pp. 1783-1786. https://doi.org/10.1126/science.1103538
  22. Viparina, S and Just, JJ (1975). The Life Period, Growth and Differentiation of Rana catesbeiana Larvae Occurring in Nature, American Society of Ichthyologists and Herpetologists (ASIH), Copeia, pp. 103-109.
  23. Vitousek, PM (1994). Beyond Global Warming: Ecology and Global Change, Ecology, 75(7), pp. 1861-1876. https://doi.org/10.2307/1941591
  24. Vitt, LJ, Caldwell, JP, Wilbur, HM and Smith, DC (1990). Amphibians as harbingers of decay, Bioscience, 40(6), pp. 418. https://doi.org/10.1093/bioscience/40.6.418
  25. Yang, SY, Kim, JM, Suck, MM, Hwa, JH and Kang, YJ (2001). Monograph of Korean Amphibia, Academy Book. [Korean Literature]