• Title/Summary/Keyword: 기후검출알고리즘

Search Result 13, Processing Time 0.026 seconds

Development of the Weather Detection Algorithm using CCTV Images and Temperature, Humidity (CCTV 영상과 온·습도 정보를 이용한 기후검출 알고리즘 개발)

  • Park, Beung-Raul;Lim, Jong-Tea
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.2
    • /
    • pp.209-217
    • /
    • 2007
  • This paper proposed to a detection scheme of weather information that is a part of CCTV Images Weather Detection System using CCTV images and Temperature, Humidity. The previous Partial Weather Detection System uses how to acquire weather information using images on the Road. In the system the contrast and RGB Values using clear images are gained. This information is distributed a input images to cloud, rain, snow and fog images. That is, this information is compared the snow and the fog images for acquisition more correctness information us ing difference images and binary images. Currently, We use to environment sense system, but we suggest a new Weather Detection Algorithm to detect weather information using CCTV images. Our algorithm is designed simply and systematically to detect and separate special characteristics of images from CCTV images. and using temperature & humidity in formation. This algorithm, there is more complex to implement than how to use DB with high overhead of time and space in the previous system. But our algorithm can be implement with low cost' and can be use the system in real work right away. Also, our algorithm can detect the exact information of weather with adding in formation including temperature, humidity, date, and time. At last, this paper s how the usefulness of our algorithm.

  • PDF

Backpropagation Algorithm based Fault Detection Model of Solar Power Generation using Weather Data and Solar Power Generation Data (기후데이터와 태양광발전 데이터를 이용한 역전파 알고리즘 기반 패널 결함 검출 방법)

  • Lee, Seung Min;Lee, Woo Jin
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.795-797
    • /
    • 2015
  • 태양광발전의 단점 중 하나인 불규칙 전력 생산문제로 인해, 장비 및 패널 결함에 실시간 대응하지 못하는 문제가 발생한다. 태양광패널 결함을 자동 검출하기 위해 기후데이터 및 패널 정보를 이용하여 신경망에 적용하고 역전과 알고리즘을 통해 학습하는 발전량 예측 및 실시간 결함 검출 모델을 제안한다.

Gaussian Mixture Model Based Smoke Detection Algorithm Robust to Lights Variations (Gaussian 혼합모델 기반 조명 변화에 강건한 연기검출 알고리즘)

  • Park, Jang-Sik;Song, Jong-Kwan;Yoon, Byung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.733-739
    • /
    • 2012
  • In this paper, a smoke detection algorithm robust to brightness and color variations depending on time and weather is proposed. The proposed smoke detection algorithm specifies the candidate region using difference images of input and background images, determines smoke by comparing feature coefficients of Gaussian mixture model of difference images. Thresholds for specifying candidate region is divided by four levels according to average brightness and chrominance of input images. Clusters of Gaussian mixture models of difference images are aligned according to average brightness. Smoke is determined by comparing distance of Gaussian mixture model parameters. The proposed algorithm is implemented by media dedicated DSP. As results of experiments, it is shown that the proposed algorithm is effective to detect smoke with camera installed outdoor.

A Study for Video-based Vehicle Surveillance on Outdoor Road (실외 도로에서의 영상기반 차량 감시에 관한 연구)

  • Park, Keun-Soo;Kim, Hyun-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1647-1654
    • /
    • 2013
  • Detection performance of the vehicle on the road depends on weather conditions, the shadow by the movement of the sun, or illumination changes, etc. In this paper, a vehicle detection system in conjunction with a robust background estimate algorithm to environment change on the road in daytime is proposed. Gaussian Mixture Model is applied as background estimation algorithm, and also, Adaboost algorithm is applied to detect the vehicle for candidate region. Through the experiments with input videos obtained from a various weather conditions at the same actual road, the proposed algorithm were useful to detect vehicles in the road.

Image Processing in Deciphering the Letter Written in Rocks by Experiment of Sample Texts (영상신호처리에 의한 금석문 음각문자 판독 - 샘플시료를 이용한 실험을 통하여)

  • Hwang, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.765-768
    • /
    • 2003
  • 금속이나 암석에 음각(陰角)으로 각인된 문자나 그림들은 날씨나 주변 빛 환경에 따라 시각으로 입력되는 정보에 큰 차이를 보인다. 이를 이미지검출장치를 통해 읽어드려 디지털 이미지 신호로 만들고자 할 때는 더욱 그 정도가 심하여 대상체가 위치하는 빛 환경이나 검출기 특성에 각별한 신경을 써야한다. 자연광이나 전구 그리고 기후나 날씨에 의해 조성되는 빛 환경은 조도(照度), 조사각도(照射角度), 그림자 및 대상체 표면 상태 등이 중요한 결정 인자들이다. 빛 환경이 디지털 이미지 질(質)에 끼치는 영향을 최소화하기 위한 실험실 차원의 빛환경조정실을 구축하였다. 외부 유입 광선을 모두 차단하고 지향성이 있는 조명에 의해서만 대상체에 빛이 조사되도록 하고 디지털 카메라로 대상체의 이미지를 담았다. 음각 문자를 새긴 샘플석문(石文)을 제작하고 실험실 안의 정량화된 빛환경 하에서 석문의 이미지를 취득하였다. 전처리 과정을 통해 노이즈를 제거하고 이미지의 질을 향상시켰다. 처리된 이미지를 분석하여 문자영역과 바탕영역의 신호패턴을 추출한 다음 룩업 테이블, 조도 레벨 슬라이징, 중첩의 원리 및 Morphology 등의 기법을 알고리즘화하여 2진 형태의 음각문자를 판독 및 복원하는데 성공하였다.

  • PDF

Temporal Analysis of Agricultural Reservoir Water Surface Area using Remote Sensing and CNN (위성영상 및 CNN을 활용한 소규모 농업용 저수지의 수표면적 시계열 분석)

  • Yang, Mi-Hye;Nam, Won-Ho;Lee, Hee-Jin;Kim, Taegon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.118-118
    • /
    • 2021
  • 최근 지구 온난화 현상으로 인한 기후변화로 이상기후 현상이 발생하고 있으며 이로 인해 장기적으로 폭염의 빈도 및 강도 상승에 따른 가뭄 피해 우려가 증가하고 있다. 농업 가뭄은 강수량 부족, 토양 수분 부족, 저수량 부족 등 농업분야에 영향을 주는 인자들과 관련되어 있어 농작물 생육 및 수확량 감소를 야기한다. 우리나라는 논농사가 주를 이루고 있어 국내 농업 가뭄은 주수원공인 농업용 저수지의 가용저수용량으로 판단 가능하다. 따라서 안정적인 농업용수 공급을 위해 수리시설물의 모니터링, 공급량 등의 분석이 이루어져야 하며, 농업 가뭄에 대비하기 위해 농업용 저수지의 가용저수용량 파악이 필요하다. 수자원 분야에서 지점자료의 시·공간적 한계점을 보완하기 위해 인공위성 자료를 활용한 연구가 활발히 이루어지고 있으며, 본 연구에서는 위성영상 자료 및 딥러닝 기반 알고리즘을 적용하여 농업용 저수지 수표면 탐지 및 시계열 분석을 목적으로 한다. 위성영상 자료는 5일 주기 및 10 m 공간해상도를 가진 Sentinel-2 위성영상 자료를 활용하고자 하였으며, 딥러닝에 적용하기 위하여 100장 이상의 영상 이미지를 구축하였다. 딥러닝 기반 알고리즘으로는 Convolutional Neural Network (CNN)을 활용하였으며, CNN은 주로 이미지 분류나 객체 검출 문제를 해결하기 위해 제안된 모델로 최근 픽셀 단위로 분류가 가능한 알고리즘이 개발되어 높은 정확도의 수표면 탐지가 가능할 것으로 판단된다. 따라서 본 연구에서는 CNN 기반 수표면 탐지 알고리즘을 개발하여 Sentinel-2 영상 기준 경기도 안성시를 대상으로 소규모 농업용 저수지의 수표면적에 대한 시계열 데이터를 분석하고자 한다.

  • PDF

Development of a System for Predicting Photovoltaic Power Generation and Detecting Defects Using Machine Learning (기계학습을 이용한 태양광 발전량 예측 및 결함 검출 시스템 개발)

  • Lee, Seungmin;Lee, Woo Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.353-360
    • /
    • 2016
  • Recently, solar photovoltaic(PV) power generation which generates electrical power from solar panels composed of multiple solar cells, showed the most prominent growth in the renewable energy sector worldwide. However, in spite of increased demand and need for a photovoltaic power generation, it is difficult to early detect defects of solar panels and equipments due to wide and irregular distribution of power generation. In this paper, we choose an optimal machine learning algorithm for estimating the generation amount of solar power by considering several panel information and climate information and develop a defect detection system by using the chosen algorithm generation. Also we apply the algorithm to a domestic solar photovoltaic power plant as a case study.

Study on Fault Detection System used the Classified Rule-based of HVAC (분류형 규칙기반을 이용한 HVAC 시스템의 고장검출에 관한 연구)

  • Yoo, Seung-Sun;Youk, Sang-Jo;Cho, Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11B
    • /
    • pp.655-662
    • /
    • 2007
  • Monitoring systems used at present to operate HVAC(Heating, Ventilation and Air Conditioning) optimally do not have a function that enables to detect faults properly when there are faults of such as operating plants or performance falling, so they are unable to manage faults rapidly and operate optimally. In this paper, we have developed a classified rule-based fault detection system which can be inclusively used in HVAC system of a building by installation of sensor which is composed of HVAC system and required low costs compare to the model based fault detection system which can be used only in a special building or system. In order to experiment this algorithm, it was applied to HVAC system which is installed inside EC(Environment Chamber), verified its own practical effect, and confirmed its own applicability to the related field in the future.

A Study on the i-YOLOX Architecture for Multiple Object Detection and Classification of Household Waste (생활 폐기물 다중 객체 검출과 분류를 위한 i-YOLOX 구조에 관한 연구)

  • Weiguang Wang;Kyung Kwon Jung;Taewon Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.135-142
    • /
    • 2023
  • In addressing the prominent issues of climate change, resource scarcity, and environmental pollution associated with household waste, extensive research has been conducted on intelligent waste classification methods. These efforts range from traditional classification algorithms to machine learning and neural networks. However, challenges persist in effectively classifying waste in diverse environments and conditions due to insufficient datasets, increased complexity in neural network architectures, and performance limitations for real-world applications. Therefore, this paper proposes i-YOLOX as a solution for rapid classification and improved accuracy. The proposed model is evaluated based on network parameters, detection speed, and accuracy. To achieve this, a dataset comprising 10,000 samples of household waste, spanning 17 waste categories, is created. The i-YOLOX architecture is constructed by introducing the Involution channel convolution operator and the Convolution Branch Attention Module (CBAM) into the YOLOX structure. A comparative analysis is conducted with the performance of the existing YOLO architecture. Experimental results demonstrate that i-YOLOX enhances the detection speed and accuracy of waste objects in complex scenes compared to conventional neural networks. This confirms the effectiveness of the proposed i-YOLOX architecture in the detection and classification of multiple household waste objects.

A Study on the Artificial Intelligence-Based Soybean Growth Analysis Method (인공지능 기반 콩 생장분석 방법 연구)

  • Moon-Seok Jeon;Yeongtae Kim;Yuseok Jeong;Hyojun Bae;Chaewon Lee;Song Lim Kim;Inchan Choi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.1-14
    • /
    • 2023
  • Soybeans are one of the world's top five staple crops and a major source of plant-based protein. Due to their susceptibility to climate change, which can significantly impact grain production, the National Agricultural Science Institute is conducting research on crop phenotypes through growth analysis of various soybean varieties. While the process of capturing growth progression photos of soybeans is automated, the verification, recording, and analysis of growth stages are currently done manually. In this paper, we designed and trained a YOLOv5s model to detect soybean leaf objects from image data of soybean plants and a Convolution Neural Network (CNN) model to judgement the unfolding status of the detected soybean leaves. We combined these two models and implemented an algorithm that distinguishes layers based on the coordinates of detected soybean leaves. As a result, we developed a program that takes time-series data of soybeans as input and performs growth analysis. The program can accurately determine the growth stages of soybeans up to the second or third compound leaves.