Acknowledgement
이 논문은 농촌진흥청 연구사업(과제번호: PJ01486501)의 지원에 의해 이루어진 것임.
References
- Aich, S. and Stavness, I. (2017). Leaf counting with deep convolutional and deconvolutional networks. In Proceedings of the IEEE international conference on computer vision workshops (pp. 2080-2089).
- Bay, H., Tuytelaars, T. and Van Gool, L.(2006). Surf: Speeded up robust features. Lecture notes in computer science, 3951, 404-417. https://doi.org/10.1007/11744023_32.
- Cho, J. H. (2006). Effect of planting date and cultivation method on soybean growth in paddy field. Korean journal of organic agriculture, 14(2), 191-204.
- Cho, C., Kim, D. Y., Choi, M. S., Jin, M. and Seo, M. S. (2021). Efficient isolation and gene transfer of protoplast in korean soybean (Glycine Max (L.) Merr.) cultivars. Korean journal of breeding science, 53(3), 230-239. https://doi.org/10.9787/KJBS.2021.53.3.230
- Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J. and Chen, T. (2018). Recent advances in convolutional neural networks. Pattern recognition, 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
- Jeong, Y. S., Lee, H. R., Baek, J. H., Kim, K. H., Chung, Y. S. and Lee, C. W. (2020). Deep Learning-based rice seed segmentation for phynotyping. Journal of the Korea Industrial Information Systems Research. 25(5), 23-29. https://doi.org/10.9723/JKSIIS.2020.25.5.023
- Ko, K. E. and Sim, K. B. (2017). Trend of object recognition and detection technology using deep learning. Journal of Control Robotics and Systems, 23(3), 17-24.
- Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386.
- Karlekar, A. and Seal, A. (2020). SoyNet: Soybean leaf diseases classification. Computers and Electronics in Agriculture, 172, 105342.
- Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the seventh IEEE international conference on computer vision, 2, 1150-1157. https://doi.org/10.1109/ICCV.1999.790410.
- LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
- Lee, Y. H. and Kim, Y. (2020). Comparison of CNN and YOLO for Object Detection. Journal of the semiconductor & display technology, 19(1), 85-92.
- Lu, S., Song, Z., Chen, W., Qian, T., Zhang, Y., Chen, M. and Li, G. (2021). Counting dense leaves under natural environments via an improved deep-learning-based object detection algorithm. Agriculture, 11(10), 1003.
- Pratama, M. T., Kim, S., Ozawa, S., Ohkawa, T., Chona, Y., Tsuji, H. and Murakami, N. (2020, July). Deep learning-based object detection for crop monitoring in soybean fields. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE.
- Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 779-788. https://doi.org/10.48550/arXiv.1506.02640.
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D. and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1-9. https://doi.org/10.48550/arXiv.1409.4842.
- Saleem, M. H., Potgieter, J. and Arif, K. M. (2019). Plant disease detection and classification by deep learning, Plants, 8(11), 468.
- Teodoro, P. E., Teodoro, L. P. R., Baio, F. H. R., da Silva Junior, C. A., dos Santos, R. G., Ramos, A. P. M., Pinheiro, M. M. F., Osco, L. P., Goncalves, W. N., Carneiro, A. M., Junior, J. M., Pistori, H. and Shiratsuchi, L. S. (2021). Predicting days to maturity, plant height, and grain yield in soybean: A machine and deep learning approach using multispectral data. Remote Sensing, 13(22), 4632.