• Title/Summary/Keyword: 기하 패턴

Search Result 2,318, Processing Time 0.03 seconds

Estimation of Road Surface Condition during Summer Season Using Machine Learning (기계학습을 통한 여름철 노면상태 추정 알고리즘 개발)

  • Yeo, jiho;Lee, Jooyoung;Kim, Ganghwa;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.121-132
    • /
    • 2018
  • Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.

A Security Nonce Generation Algorithm Scheme Research for Improving Data Reliability and Anomaly Pattern Detection of Smart City Platform Data Management (스마트시티 플랫폼 데이터 운영의 이상패턴 탐지 및 데이터 신뢰성 향상을 위한 보안 난수 생성 알고리즘 방안 연구)

  • Lee, Jaekwan;Shin, Jinho;Joo, Yongjae;Noh, Jaekoo;Kim, Jae Do;Kim, Yongjoon;Jung, Namjoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.75-80
    • /
    • 2018
  • The smart city is developing an energy system efficiently through a common management of the city resource for the growth and a low carbon social. However, the smart city doesn't counter a verification effectively about a anomaly pattern detection when existing security technology (authentication, integrity, confidentiality) is used by fixed security key and key deodorization according to generated big data. This paper is proposed the "security nonce generation based on security nonce generation" for anomaly pattern detection of the adversary and a safety of the key is high through the key generation of the KDC (Key Distribution Center; KDC) for improvement. The proposed scheme distributes the generated security nonce and authentication keys to each facilities system by the KDC. This proposed scheme can be enhanced to the security by doing the external pattern detection and changed new security key through distributed security nonce with keys. Therefore, this paper can do improving the security and a responsibility of the smart city platform management data through the anomaly pattern detection and the safety of the keys.

An Analysis of the Research Trends for Urban Study using Topic Modeling (토픽모델링을 이용한 도시 분야 연구동향 분석)

  • Jang, Sun-Young;Jung, Seunghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.661-670
    • /
    • 2021
  • Research trends can be usefully used to determine the importance of research topics by period, identify insufficient research fields, and discover new fields. In this study, research trends of urban spaces, where various problems are occurring due to population concentration and urbanization, were analyzed by topic modeling. The analysis target was the abstracts of papers listed in the Korea Citation Index (KCI) published between 2002 and 2019. Topic modeling is an algorithm-based text mining technique that can discover a certain pattern in the entire content, and it is easy to cluster. In this study, the frequency of keywords, trends by year, topic derivation, cluster by topic, and trend by topic type were analyzed. Research in urban regeneration is increasing continuously, and it was analyzed as a field where detailed topics could be expanded in the future. Furthermore, urban regeneration is now becoming a regular research field. On the other hand, topics related to development/growth and energy/environment have entered a stagnation period. This study is meaningful because the correlation and trends between keywords were analyzed using topic modeling targeting all domestic urban studies.

A Comparison of Rheological Measurement Methods of Instant Cooked Rice by a Texture Analyzer (텍스처 분석기를 활용한 즉석밥 물성 측정 방법의 상호 비교)

  • Kim, Heesu;Oh, Im Kyung;Yang, Seonkyeong;Lee, Suyong
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.381-385
    • /
    • 2018
  • Various rheological methods to measure the hardness of instant cooked rice by a texture analyzer were investigated and compared. Specifically, instant white rice samples with a wide range of hardness were subjected to four different rheological tests with disk, cylinder, rod, and cone probe whose results were inter-correlated. All the measurements demonstrated that the hardness of instant rice was reduced with increasing moisture content and showed negatively linear relationships. Out of the four tests applied in this study, the highest coefficient of correlation ($R^2=0.9268$) was observed distinctly in the cone probe test, where both compressive and shear forces can be applied to deform individual rice grains. However, the cylinder probe test had the lowest coefficient of correlation ($R^2=0.7247$) because it may be ineffective in causing direct deformation of individual rice grains. Furthermore, when the hardness values (N) were converted to stress (Pa), highly linear correlations ($R^2{\approx}0.99$) were observed between the tests with similar probe geometry and force application.

Animal Home Range Estimators - A Review and a Case Study - (동물 행동권 분석 방법론 고찰 - 괭이갈매기 사례 분석과 시사점 -)

  • Lee, Sung-Joo;Lee, Who-Seung
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.202-216
    • /
    • 2022
  • Animals exhibit certain behaviors and movement patterns as they react to their internal needs, external stimuli, and surrounding environments. They have a bounded range in which they mostly spend their time, and it is referred to as a home range. Based on the fact that the home range is a critical area for the survival and preservation of species, there has been a growing body of research on developing more precise home range estimation methods to use the estimated ranges as a ground for establishing an effective conservation policy since the early 1940s. Recent rapid advancements in telemetry technology that resulted in the presence of autocorrelation between locations with short time intervals revealed the limitations of the existing estimators. Many novel estimators have been developed to compensate for it by incorporating autocorrelation in calculating home ranges. However, studies on the animal home range are still in their early stage in Korea, and newly developed methodologies have not yet been adopted. Therefore, this study aims to introduce the foreign home range estimation methods and foster domestic research activities on home ranges. Firstly, we compared and contemplated seven estimators by categorizing them into geometrical and statistical methodologies and then divided them into estimators that assume independent observations and those that consider autocorrelation in each category. After that, the home ranges of black-tailed gulls (Larus crassirostris) were calculated using GPS tracking data for the month of June and derived home range estimators by applying the methodology introduced in this study. We analyzed and compared the results to discuss the strengths and weaknesses of each method. Lastly, we proposed a guideline that can help researchers choose an appropriate estimator for home range calculation based on the animal location data characteristics and analysis purpose.

Development of Time-based Safety Performance Function for Freeways (세부 집계단위별 교통 특성을 반영한 고속도로 안전성능함수 개발)

  • Kang, Kawon;Park, Juneyoung;Lee, Kiyoung;Park, Joonggyu;Song, Changjun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.203-213
    • /
    • 2021
  • A vehicle crash occurs due to various factors such as the geometry of the road section, traffic, and driver characteristics. A safety performance function has been used in many studies to estimate the relationship between vehicle crash and road factors statistically. And depends on the purpose of the analysis, various characteristic variables have been used. And various characteristic variables have been used in the studies depending on the purpose of analysis. The existing domestic studies generally reflect the average characteristics of the sections by quantifying the traffic volume in macro aggregate units such as the ADT, but this has a limitation that it cannot reflect the real-time changing traffic characteristics. Therefore, the need for research on effective aggregation units that can flexibly reflect the characteristics of the traffic environment arises. In this paper, we develop a safety performance function that can reflect the traffic characteristics in detail with an aggregate unit for one hour in addition to the daily model used in the previous studies. As part of the present study, we also perform a comparison and evaluation between models. The safety performance function for daily and hourly units is developed using a negative binomial regression model with the number of accidents as a dependent variable. In addition, the optimal negative binomial regression model for each of the hourly and daily models was selected, and their prediction performances were compared. The model and evaluation results presented in this paper can be used to determine the risk factors for accidents in the highway section considering the dynamic characteristics. In addition, the model and evaluation results can also be used as the basis for evaluating the availability and transferability of the hourly model.

Application and Analysis of Remote Sensing Data for Disaster Management in Korea - Focused on Managing Drought of Reservoir Based on Remote Sensing - (국가 재난 관리를 위한 원격탐사 자료 분석 및 활용 - 원격탐사기반 저수지 가뭄 관리를 중심으로 -)

  • Kim, Seongsam;Lee, Junwoo;Koo, Seul;Kim, Yongmin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1749-1760
    • /
    • 2022
  • In modern society, human and social damages caused by natural disasters and frequent disaster accidents have been increased year by year. Prompt access to dangerous disaster sites that are inaccessible or inaccessible using state-of-the-art Earth observation equipment such as satellites, drones, and survey robots, and timely collection and analysis of meaningful disaster information. It can play an important role in protecting people's property and life throughout the entire disaster management cycle, such as responding to disaster sites and establishing mid-to long-term recovery plans. This special issue introduces the National Disaster Management Research Institute (NDMI)'s disaster management technology that utilizes various Earth observation platforms, such as mobile survey vehicles equipped with close-range disaster site survey sensors, drones, and survey robots, as well as satellite technology, which is a tool of remote earth observation. Major research achievements include detection of damage from water disasters using Google Earth Engine, mid- and long-term time series observation, detection of reservoir water bodies using Sentinel-1 Synthetic Aperture Radar (SAR) images and artificial intelligence, analysis of resident movement patterns in case of forest fire disasters, and data analysis of disaster safety research. Efficient integrated management and utilization plan research results are summarized. In addition, research results on scientific investigation activities on the causes of disasters using drones and survey robots during the investigation of inaccessible and dangerous disaster sites were described.

Fabrication of Printed Graphene Pattern Via Exfoliation and Ink Formulation of Natural Graphite (천연흑연 박리를 통한 그래핀 잉크 생산 및 프린팅)

  • Gyuri, Kim;Yeongwon, Kwak;Ho Young, Jun;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.293-300
    • /
    • 2022
  • The remarkable mechanical, electrical, and thermal properties of graphene have recently sparked tremendous interest in various research fields. One of the most promising methods to produce large quantities of graphene dispersion is liquid-phase exfoliation (LPE) which utilizes ultrasonic waves or shear stresses to exfoliate bulk graphite into graphene flakes that are a few layers thick. Graphene dispersion produced via LPE can be transformed into graphene ink to further boost graphene's applications, but producing high-quality graphene more economically remains a challenge. To overcome this shortcoming, an advanced LPE process should be developed that uses relatively cheap natural graphite as a graphene source. In this study, a flow-LPE process was used to exfoliate natural graphite to produce graphene that was three times cheaper and seven times larger than synthetic graphite. The optimal exfoliation conditions in the flow-LPE process were determined in order to produce high-quality graphene flakes. In addition, the structural and electrical properties of the flakes were characterized. The electrical properties of the exfoliated graphene were investigated by carrying out an ink formulation process to prepare graphene ink suitable for inkjet printing, and fabricating a printed graphene pattern. By utilizing natural graphite, this study offers a potential protocol for graphene production, ink formulation, and printed graphene devices in a more industrial-comparable manner.

A Sanitizer for Detecting Vulnerable Code Patterns in uC/OS-II Operating System-based Firmware for Programmable Logic Controllers (PLC용 uC/OS-II 운영체제 기반 펌웨어에서 발생 가능한 취약점 패턴 탐지 새니타이저)

  • Han, Seungjae;Lee, Keonyong;You, Guenha;Cho, Seong-je
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.1
    • /
    • pp.65-79
    • /
    • 2020
  • As Programmable Logic Controllers (PLCs), popular components in industrial control systems (ICS), are incorporated with the technologies such as micro-controllers, real-time operating systems, and communication capabilities. As the latest PLCs have been connected to the Internet, they are becoming a main target of cyber threats. This paper proposes two sanitizers that improve the security of uC/OS-II based firmware for a PLC. That is, we devise BU sanitizer for detecting out-of-bounds accesses to buffers and UaF sanitizer for fixing use-after-free bugs in the firmware. They can sanitize the binary firmware image generated in a desktop PC before downloading it to the PLC. The BU sanitizer can also detect the violation of control flow integrity using both call graph and symbols of functions in the firmware image. We have implemented the proposed two sanitizers as a prototype system on a PLC running uC/OS-II and demonstrated the effectiveness of them by performing experiments as well as comparing them with the existing sanitizers. These findings can be used to detect and mitigate unintended vulnerabilities during the firmware development phase.

Prediction of KRW/USD exchange rate during the Covid-19 pandemic using SARIMA and ARDL models (SARIMA와 ARDL모형을 활용한 COVID-19 구간별 원/달러 환율 예측)

  • Oh, In-Jeong;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.191-209
    • /
    • 2022
  • This paper is a review of studies that focus on the prediction of a won/dollar exchange rate before and after the covid 19 pandemic. The Korea economy has an unprecedent situation starting from 2021 up till 2022 where the won/dollar exchange rate has exceeded 1,400 KRW, a first time since the global financial crisis in 2008. The US Federal Reserve has raised the interest rate up to 2.5% (2022.7) called a 'Big Step' and the Korea central bank has also raised the interested rate up to 2.5% (2022.8) accordingly. In the unpredictable economic situation, the prediction of the won/dollar exchange rate has become more important than ever. The authors separated the period from 2015.Jan to 2022.Aug into three periods and built a best fitted ARIMA/ARDL prediction model using the period 1. Finally using the best the fitted prediction model, we predicted the won/dollar exchange rate for each period. The conclusions of the study were that during Period 3, when the usual relationship between exchange rates and economic factors appears, the ARDL model reflecting the variable relationship is a better predictive model, and in Period 2 of the transitional period, which deviates from the typical pattern of exchange rate and economic factors, the SARIMA model, which reflects only historical exchange rate trends, was validated as a model with a better predictive performance.