• Title/Summary/Keyword: 기하학 원론

Search Result 16, Processing Time 0.017 seconds

The relation of the angle sum of a triangle and the property of parallel lines in Elementary school mathematics (초등학교 수학에서 삼각형 내각의 합과 평행선의 성질의 연계성)

  • Hong, Gap Ju;Song, Myeong Seon
    • Education of Primary School Mathematics
    • /
    • v.16 no.2
    • /
    • pp.183-192
    • /
    • 2013
  • This study points out that the angle sum of a triangle and the property of parallel lines are taught without showing any relations between them on elementary school mathematics textbooks. This study looks into the structure of Euclid Elements so that it discusses about the contents of current Korean textbooks. The property of the alternate angles and the corresponding angles of parallel lines are inherent in many subjects in Elementary school mathematics, and have meaning that must be thought with the angle sum of triangles in the structure of Euclid Elements. With this consideration, this study makes a conclusion that these two subjects should be taught by presenting relations between them.

Golden Section Found in Hand Axe (주먹 돌도끼에 나타난 황금비)

  • Han, Jeong-Soon
    • Journal for History of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.43-54
    • /
    • 2006
  • The purpose of this paper, followed by 'Nature$\cdot$Human, and Golden Section I ', is to study aesthetic consciousness, mentality model and body proportion of human, and the golden section applied to architecture and hand axe of stone age. In particular, handaxes of one million years ago have shown that they had critical competency to the basis of art and mathematics in the future. Furthermore, without pen, paper and ruler, the existence of mentality model made fundamental conversion of mathematics possible. Different sizes of handaxes were made by maintaining the equal golden section. This was the first example in relation to the principle mentioned in 'Stoicheia' by Euclid which was published hundred thousands of years later.

  • PDF

A Study on the Historic-Genetic Principle of Mathematics Education(1) - A Historic-Genetic Approach to Teaching the Meaning of Proof (역사발생적 수학교육 원리에 대한 연구(1) - 증명의 의미 지도의 역사발생적 전개)

  • 우정호;박미애;권석일
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.401-420
    • /
    • 2003
  • We have many problems in the teaching and learning of proof, especially in the demonstrative geometry of middle school mathematics introducing the proof for the first time. Above all, it is the serious problem that many students do not understand the meaning of proof. In this paper we intend to show that teaching the meaning of proof in terms of historic-genetic approach will be a method to improve the way of teaching proof. We investigate the development of proof which goes through three stages such as experimental, intuitional, and scientific stage as well as the development of geometry up to the completion of Euclid's Elements as Bran-ford set out, and analyze the teaching process for the purpose of looking for the way of improving the way of teaching proof through the historic-genetic approach. We conducted lessons about the angle-sum property of triangle in accordance with these three stages to the students of seventh grade. We show that the students will understand the meaning of proof meaningfully and properly through the historic-genetic approach.

  • PDF

A Critical Study on the Teaching-Learning Approach of the SMSG Focusing on the Area Concept (넓이 개념의 SMSG 교수-학습 방식에 대한 비판적 고찰)

  • Park, Sun-Yong;Choi, Ji-Sun;Park, Kyo-Sik
    • School Mathematics
    • /
    • v.10 no.1
    • /
    • pp.123-138
    • /
    • 2008
  • The objective of this paper is to reveal the cause of failure of New Math in the field of the SMSG area education from the didactical point of view. At first, we analyzed Euclid's (Elements), De Morgan's (Elements of arithmetic), and Legendre's (Elements of geometry and trigonometry) in order to identify characteristics of the area conception in the SMSG. And by analyzing the controversy between Wittenberg(1963) and Moise(1963), we found that the elementariness and the mental object of the area concept are the key of the success of SMSG's approach. As a result, we conclude that SMSG's approach became separated from the mathematical contents of the similarity concept, the idea of same-area, incommensurability and so on. In this account, we disclosed that New Math gave rise to the lack of elementariness and geometrical mental object, which was the fundamental cause of failure of New Math.

  • PDF

A Study on the A nalysis and Synthesis in Mathematics Education Based on Euclid's 'The Data' and 'On Divisions' (유클리드의 자료론(The Data)과 분할론(On Divisons)에 기초한 수학교육에서 분석과 종합에 대한 고찰)

  • Suh, Bo-Euk
    • Education of Primary School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.27-41
    • /
    • 2011
  • This study is the consideration to 'The Data' and 'On Divisions' of Euclid which is the historical start of analysis and synthesis. 'The Data' and 'On Divisions' compared to Euclid's Elements is not interested. In this study, analysis and synthesis were examined for significance. In this study, means for 'analysis' and 'synthesis' were examined through an analysis of 'The Data' and 'On Divisions'. First, the various terms including analysis and synthesis were examined and the concepts of the terms were analyzed. Then, analysis was divided into 'external analysis' and 'internal analysis'. And synthesis was divided into 'theoretical synthesis' and 'empirical synthesis'. On the basis of this classification problem presented in elementary textbooks and the practical applications were explored.

A STUDY ON THE NORMAL DENTAL ARCH FORM OF KOREAN ADULT (한국인 성인의 정상 치열궁 형태에 관한 연구)

  • Chung, Ha-Ik
    • The korean journal of orthodontics
    • /
    • v.3 no.1
    • /
    • pp.7-13
    • /
    • 1972
  • Many geometric curves are presented as representative form of normal dental arches by many authors; circle, ellipse, parabola or catenary curve. Among them those except circle seems difficult to be adopted as a guide in ideal arch form construction and practically many orthodontists chose circle as a standard. Author preferred circle of Bonwill's theory in study of anterior teeth alignment of Korean adults. Eighty three dental models which possess proper occlusion and good arch form were selected and copies of their occlusal surfaces obtained by Ricopy machine. The use of Ricopy machine made it possible to draw arch form exactly. Mesiodistal widths of six anterior teeth were measured and they were added to combined mesiodistal width of six anterior teeth. Circle, that include the points of two cuspal tips of canines and one incisal edge of central incisor were drawn. Distances of lateral incisors that are deviated from arc of this circle were measured and classified into four grades by degree and three groups by kind of teeth deviated. By counting the number of samples involved degree of fit of the circle to arch contour of Korean adult was described. Then, size of radius of circle, intercanine width and intermolar width were measured and evaluated their ratios to combined mesiodistal width of six anterior teeth. In normal occlusion of Korean adult anterior teeth seems to be arranged on an arc of circle the radius of which is similar to combined mesiodistal width of six anterior teeth. Intercanine width and intermolar width have rather constant ratios to combined width of six anterior teeth.

  • PDF