• Title/Summary/Keyword: 기하학적 확률

Search Result 76, Processing Time 0.024 seconds

Stochastic Imperfection Sensitivity Analyses of Stiffened Cylindrical Shells with Geometric Random Imperfection (불확정적인 초기형상결함을 갖는 보강 원통형 쉘의 확률론적 초기결함 민감도해석)

  • D.K. Kim;Y.S. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.142-154
    • /
    • 1994
  • In this paper, stochastic imperfection sensitivity analyses of stiffened cylindrical shells under static load are presented. Multimode formulation is performed for the buckling load calculation based on the Donnell's theory and Galerkin approximation. Random imperfection field theory and response surface method are combined with deterministic bucking analysis scheme to perform stochastic imperfection sensitivity analyses of stiffened cylindrical shells considering random geometric imperfection. From the characteristics of probabilistic bucking load, the relation between reliability index and safety parameter can be obtained in addition to the relation between load and reliability index. Those results can be used to determine the range of required safety parameter and acceptable imperfection.

  • PDF

Adjustment of Exterior Orientation Parameters Geometric Registration of Aerial Images and LIDAR Data (항공영상과 라이다데이터의 기하학적 정합을 위한 외부표정요소의 조정)

  • Hong, Ju-Seok;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.585-597
    • /
    • 2009
  • This research aims to develop a registration method to remove the geometric inconsistency between aerial images and LIDAR data acquired from an airborne multi-sensor system. The proposed method mainly includes registration primitives extraction, correspondence establishment, and EOP(Exterior Orientation Parameters) adjustment. As the registration primitives, we extracts planar patches and intersection edges from the LIDAR data and object points and linking edges from the aerial images. The extracted primitives are then categorized into horizontal and vertical ones; and their correspondences are established. These correspondent pairs are incorporated as stochastic constraints into the bundle block adjustment, which finally precisely adjusts the exterior orientation parameters of the images. According to the experimental results from the application of the proposed method to real data, we found that the attitude parameters of EOPs were meaningfully adjusted and the geometric inconsistency of the primitives used for the adjustment is reduced from 2 m to 2 cm before and after the registration. Hence, the results of this research can contribute to data fusion for the high quality 3D spatial information.

Object Relationship Modeling based on Bayesian Network Integration for Improving Object Detection Performance of Service Robots (서비스 로봇의 물체 탐색 성능 향상을 위한 베이지안 네트워크 결합 기반 물체 관계 모델링)

  • Song, Youn-Suk;Cho, Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.195-198
    • /
    • 2005
  • 최근 실내 환경에서 영상 정보를 사용하여 로봇이 서비스를 제공하기 위한 연구가 활발하다. 과거 영상 처리 접근 방법은 산업 환경과 같은 예측 가능한 환경을 바탕으로 미리 정의된 기하학적 모델을 통해 상황을 인식하였기에, 이를 실내 환경과 같은 가변적인 환경에 적용할 시 성능이 저하된다. 이에 지식을 기반으로 불확실성을 해결하여 정확도를 향상 시킴으로써 영상 인식 성능을 높이기 위한 다양한 연구가 진행되어 왔다. 본 논문에서는 실내에서 활동하는 서비스 로봇의 물체인식 성능을 향상시키기 위해, 대상 물체가 다른 물체에 의해서 가려져 있는 경우 대상 물체의 존재 여부를 추론하기 위한 베이지안 네트워크 모델링 방법을 제안한다. 제안하는 방법은 작은 단위로 설계된 베이지안 네트워크들을 상황에 따라 결합하여 추론 모델이 구성되게 하였고 물체간의 관계를 효과적으로 표현하고 초기 확률 값을 단일하게 유지하기 위해 제안된 확률 값 설정 방법을 사용하였다. 실험은 물체 관계를 추론하는 모듈의 성능을 검증하기 위해 수행되었는데, 5가지 장소에서 82.8$\%$의 정확도를 보여주었다.

  • PDF

A Study of Statistical Analysis of Rock Joint Directional Data (암반 절리 방향성 자료의 통계적 분석 기법에 관한 연구)

  • 류동우;김영민;이희근
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • Rock joint orientation is one of important geometric attributes that have an influence on the stability of rock structures such as rock slopes and tunnels. Especially, statistical models of the geometric attributes of rock joints can provide a probabilistic approach of rock engineering problems. The result from probabilistic modeling relies on the choice of statistical model. Therefore, it is critical to define a representative statistical model for joint orientation data as well as joint size and intensity and build up a series of modeling procedure including analytical validation. In this paper, we have examined a theoretical methodology for the statistical estimate and hypothesis analysis based upon Fisher distribution and bivariate normal distribution. In addition, we have proposed the algorithms of random number generator which is applied to the simulation of rock joint networks and risk analysis.

A Formulation for Response Variability of Plates Considering Multiple Random Parameters (다중 불확실 인수를 고려한 평판의 응답변화도 산정 정식화)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.789-799
    • /
    • 2007
  • In this paper, we propose a stochastic finite element formulation which takes into account the randonmess in the material and geometrical parameters. The formulation is proposed for plate structures, and is based on the weighted integral approach. Contrary to the case of elastic modulus, plate thickness contributes to the stiffness as a third-order function. Furthermore, Poisson's ratio is even more complex since this parameter appears in the constitutive relations in the fraction form. Accordingly, we employ Taylor's expansion to derive decomposed stochastic field functions in ascending order. In order to verify the proposed formulation, the results obtained using the proposed scheme are compared with those in the literature and those of Monte Carlo analysis as well.

Reliability Analysis for Fracture of Concrete Armour Units (콘크리트 피복재의 단면파괴에 대한 신뢰성 해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.86-96
    • /
    • 2003
  • A fracture or breakage of the concrete armor units in the primary cover layer of breakwaters is studied by using the reliability analysis which may be defined as the structural stability. The reliability function can be derived as a function of the angle of rotation that represents the rocking of armor units quantitatively. The relative influences of all of random variables related to the material and geometric properties on the fracture of armor units is analyzed in detail. In addition, the probability of failure for the fracture of individual armor unit can be evaluated as a function of the incident wave height. Finally, Bernoulli random process and the allowable fracture ratio may be introduced together in this paper, by which the probability of failure of a breakwater due to the fracture of armer units can be obtained straightforwardly. It is found that the probability of failure of a breakwater due to the fracture of armor units may be varied with the several allowable fracture ratios. Therefore, it should be necessary to consider the structural stability as well as the hydraulic stability for the design of breakwaters with multi-leg slender concrete armor units of large size under wave action in deep water.

Probabilistic Nonlinear Analysis of Semi-Rigid Frames Considering Random Elastic Modulus (탄성계수 불확실성을 고려한 반강접 프레임 구조의 확률적 비선형 거동 해석)

  • Kim, Dae Young;Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.191-198
    • /
    • 2013
  • In this paper, the effects of uncertain material constant on the nonlinear behavior of steel frames with semi-rigid joints are examined. As to the probabilistic model, a normal distribution is assumed to simulate the uncertain elastic modulus of steel material. A nonlinear structural analysis program, which can consider both semi-rigidity in joints of the steel frames and uncertainty in the material constant, is developed. Including the geometric, material and connection nonlinearites which are the parameters of nonlinear behavior of steel frames, probabilistic analysis is conducted based on the Monte-Carlo simulation. In the probabilistic analyses, we consider the three different cases for random variables. The deterministic analysis results are shown to be in good agreement with those of the previous research results in the literature. As to the probabilistic analyses, it is observed that the coefficient of variation(COV) of displacements increases as the loading increases, and that the values of COV are dependent on the structural features of the frames.

Design and Implementation of Location Error Correction Algorithm for RTLS (RTLS를 위한 위치 보정 기법의 설계 및 구현)

  • Jung, Dong-Gyu;Ryu, Woo-Seok;Park, Jae-Kwan;Hong, Bong-Hee
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.286-292
    • /
    • 2008
  • RTLS 시스템은 이동 객체에 RTLS 태그를 부착한 후 태그에서 발산되는 신호를 이용하여 실시간으로 위치를 파악하는 시스템으로 최근 항만 물류 및 자산 관리 분야에서 객체의 실시간 위치를 파악하기 위해 활용되고 있다. RTLS 시스템은 태그의 위치를 측정하기 위해 삼각 측량 법이나, Proximity matching법을 사용한다. 삼각 측량법은 3개 이상의 리더에서 수신된 신호 세기나 신호의 도달 시간을 이용하여 삼각측량 방식으로 위치를 결정하는 알고리즘으로, 전파의 난반사나 장애물등에 민감하며, Proximity matching법은 위치 샘플링 값에 대한 근접성을 이용한 통계 정보를 바탕으로 하여 위치를 결정하는 알고리즘으로 위치 정확도를 높일 수 있으나, 샘플링 데이터 개수에 따라 정확도가 크게 변화하는 문제가 있다. 본 논문에서는 이러한 위치 정보의 오차를 줄이기 위하여, Fingerprint 방식의 확률 모델에 TDOA 방식에서 사용되는 요소들을 혼합하여 확률에 의한 불확실성을 줄이고 더 높은 정확도의 위치 정보를 전달하는 위치 보정 기법을 제안한다. 본 논문에서 제안하는 2단계 위치 보정 기법은 먼저, Fingerprint 데이터 셋으로부터 현재 측정된 위치의 신호정보를 이용한 확률 모델을 적용하여 단 하나의 후보자를 결정한다. 둘째, 측정된 정보와 후보자 위치 정보를 기반으로 TDOA에서 사용하는 기하학적 위치 결정 방법을 변형한 알고리즘을 이용해 측정된 위치를 보정함으로써, TDOA 방식이나, Fingerprint 방식 둘 중 하나만 사용하는 것보다 향상된 위치의 정확도를 제공한다. 그리고 본 논문에서는 제안한 위치 보정 기법을 위한 위치 보정 모듈을 설계하였으며, RTLS 미들웨어에 이를 반영하여 구현하였다.

  • PDF

Variation of the Detection Efficiency of a HPGe Detector with the Density of the Sample in the Radioactivity Analysis (방사능 분석에서 밀도에 따른 HPGe 검출기의 검출효율 변화)

  • Seo, Bum-Kyoung;Lee, Kil-Yong;Yoon, Yoon-Yeol;Jung, Ki-Jung;Oh, Won-Zin;Lee, Kune-Woo
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.59-65
    • /
    • 2005
  • When the low level radioactivity sample is measured, it is required to have many samples. For increase of the sample volume, a scattering and absorbing probability of the emitted gamma-ray in the sample are to be increased. In order to correct the self-absorption effect, the counting efficiency must be calibrated according to a geometrical condition and sample density. But, it is impossible to determine efficiency for counting sample using standard source with the same geometrical condition and density. In this study, the measuring efficiencies were determined with various counting containers and densities. In order to compare the self-absorption effect with the sample density in the various sample container, the variation of the counting efficiency with the densities was investigated by adding NaI, which has high solubility and density. Also, they were compared with Monte Carlo simulation. The self-absorption effect was found to be significant in the low energy region below 0.5 MeV.

Stability Analysis of Landslides using a Probabilistic Analysis Method in the Boeun Area (확률론적 해석기법을 이용한 보은지역의 사면재해 안정성분석)

  • Jeong, Nam-Soo;You, Kwang-ho;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.247-257
    • /
    • 2011
  • In this study the infinite slope model, one of the physical landslide models has been suggested to evaluate the susceptibility of the landslide. However, applying the infinite slope model in regional study area can be difficult or impossible because of the difficulties in obtaining and processing of large spatial data sets. With limited site investigation data, uncertainties were inevitably involved with. Therefore, the probabilistic analysis method such as Monte Carlo simulation and the GIS based infinite slope stability model have been used to evaluate the probability of failure. The proposed approach has been applied to practical example. The study area in Boeun area been selected since the area has been experienced tremendous amount of landslide occurrence. The geometric characteristics of the slope and the mechanical properties of soils like to friction angle and cohesion were obtained. In addition, coefficient of variation (COV) values in the uncertain parameters were varied from 10% to 30% in order to evaluate the effect of the uncertainty. The analysis results showed that the probabilistic analysis method can reduce the effect of uncertainty involved in input parameters.