• Title/Summary/Keyword: 기하작도

Search Result 230, Processing Time 0.033 seconds

작도 문제의 해결 방법

  • 한인기
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제9권
    • /
    • pp.153-164
    • /
    • 1999
  • 작도 문제는 역사적으로 아주 오래된 문제 중의 하나일 뿐만 아니라, 현재 우리 나라 기하 교육에 있어 매우 중요한 역할을 하고 있다. 즉, 평면 기하의 중심 정리들 중의 하나인 삼각형의 합동 조건들을 도입하기 위한 기초로 주어진 조건들(세 선분, 두 선분과 이들 사이의 끼인각, 한 선분과 그 양 끝에 놓인 두 각)에 상응하는 삼각형의 작도가 행해진다. 그러나, 현행 수학 교과서나 수학 교수법을 살펴보면, 작도 문제 해결 방법 및 지도에 대한 연구가 미미한 실정이다. 본 연구에서는 작도 문제의 특성, 작도 문제의 해결 방법 및 지도에 관한 접근을 모색할 것이다. 이를 통해, 학습자들이 다양한 탐색 활동 속에서 작도 문제를 탐구할 수 있는 이론적, 실제적 근거를 제시하고, 수학 심화 학습에 작도 문제를 이용할 수 있는 가능성을 제시할 것이다.

  • PDF

작도 접근 방식에 따른 중학생의 기하학적 특성 인식 및 정당화 (Seventh-Grade Students' Recognition of Geometric Properties and Justification Steps Emerging through Their Construction Approaches)

  • 양은경;신재홍
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제24권4호
    • /
    • pp.515-536
    • /
    • 2014
  • 본 연구에서는 GSP(Geometer's Sketchpad) 환경의 기하 문제 해결 과정에서 중학교 1학년 학생들이 각자의 작도 접근 방식을 통해 어떻게 기하학적 특성을 인식하고, 자신들의 작도에 대한 이유를 정당화하는지 살펴보았다. 다양한 드래깅 활동을 통해 학생들은 종속성 및 1수준 불변성을 파악하면서 자신의 작도 방식을 결정하였는데, 강건한 작도 방식을 택한 경우 기본 점의 경로를 바로 인식하여 1단계 정당화에 이른 반면, 유연한 작도 방식을 택한 경우에는 많은 시행착오를 거쳐 2수준 불변성과 경로를 인식한 뒤 2단계 정당화에 이르렀다.

  • PDF

역동적 기하 환경에서 비례를 이용한 중학교 함수의 작도 (Construction of Elementary Functions through Proportions on the Dynamic Environment)

  • 류희찬;윤옥교
    • 대한수학교육학회지:학교수학
    • /
    • 제13권1호
    • /
    • pp.19-36
    • /
    • 2011
  • 본 연구는 중학교 학생들에게 닮은 삼각형의 대응변 사이에 성립하는 비례적 성질에 기초하여 함수를 작도할 수 있는 기회를 제공함으로써 대수적 함수와 그것의 기하학적 성질에 관한 학생들의 직관을 촉진시키기 위한 것이다. 또한, 학생들이 선택한 작도 방법에 관한 정당화의 과정을 강조함으로써 연역적 추론능력을 향상시키고자 하였다. 이 예비 연구의 결과로서 학생들이 함수를 작도하는 과정에서 나타나는 사고 과정의 특징과 교사의 역할에 관해 기술하였다.

  • PDF

GSP를 활용한 투시화법의 작도

  • 계영희
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제10권
    • /
    • pp.293-302
    • /
    • 2000
  • GSP는 The Geometer's Sketchapd의 약자로 1994년 미국에서 연구 개발된 기하 프로그램이다. 기존의 정적인 평면 기하를 동적인 기하로 변환 할 수 있으므로 visual 세대인 현재의 학생들에게 학습에 대한 흥미를 유발시킬 수 있다. 본 논문에서는 특히 3차원 입체를 2차원 평면에 투영시키는 투시화법을 GSP를 도구로 구현해 보았다.

  • PDF

대학수학에서 비유클리드 기하의 지도

  • 김병무
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제13권2호
    • /
    • pp.693-700
    • /
    • 2002
  • 대학수학(미분적분학의 이해, 생활과 수학)수업에서, 공간좌표 단원과 도형편을 지도할 때, 구체적인 모델을 들고 또, 구체적인 예- 쌍곡기하에서는, i)삼각형의 세 내각의 크기의 합은 180도 보다 작다 ii) 피타고라스 정리가 성립하지 않는다. iii) 세 내각의 크기가 90도이고 한 내각의 크기가 90도 보다 작은 사각형이 존재한다. 는 예를 들어 유클리드 기하와 쌍곡기하에 대해 비교 설명하며 수업에 흥미를 불러 일으키고, 새로운 세계에 대한 생각을 할 수 있는 기회를 제공한다.

  • PDF

매스매티카를 활용한 나비곡선의 작도 및 기하학적 성질 분석

  • 금영희;김영익
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권1호
    • /
    • pp.257-266
    • /
    • 2004
  • 자연의 세계에서 나뭇잎, 돌기물, 구름, 해안선, 곤충의 모습 등에 내재하고 있는 아름다움은 흔히 균형성, 대칭성, 다양성 등으로부터 비롯된다. 자연 현상은 복소수를 활용하여 극좌표 표현으로 묘사되는 경우가 많다. 본 논문에서는 1989년 Temple H. Fay가 Amer. Math. Monthly 96(5)호에서 발표한 나비곡선 r= e$^{cos{\theta}}$-2cos4${\theta}$+sin$^5$($\frac{\theta}{12}$)의 기하학적 성질을 대칭 이동, 회전 이동, 수치적분, 미분, 극좌표계, 삼각함수, 지수함수 및 매개함수의 표현 등 고등학교 및 대학의 미적분학 관점에서 살펴 보고 극좌표 도형에 관한 흥미 유발과 더불어 컴퓨터 활용 방법을 제시하기로 한다. 수학전문 소프트웨어인 매스매티카를 활용하여 나비곡선의 작도 및 기하학적 성질을 분석하고자 한다.

  • PDF

Clairaut의 <기하학 원론>에 근거한 7-나 단계 작도단원의 자료 개발과 적용에 관한 연구 (Development and Application of Learning Materials of the Construction Unit in 7-B Grade Based on Clairaut's $El{\`{e}}ments$ de $G{\`{e}}om{\`{e}}trie$)

  • 박명희;신경희
    • 한국수학사학회지
    • /
    • 제19권4호
    • /
    • pp.117-132
    • /
    • 2006
  • 본 논문의 연구자는 중등과정 <7-나 단계> 작도 단원의 의미 있는 학습을 위하여, 자연스러운 발생을 강조하는 Clairaut의 <기하학 원론>을 기반으로 한 5차시 학습 자료를 개발하였다. 중학교 1학년 학생 6명을 대상으로 이를 적용한 수업을 실시하였고, 작도문제 해결을 분석에서 시작하여 작도, 확인 및 탐구로 이어지는 학습 과정의 특징을 분석하였다.

  • PDF

우리나라 공교육과 발도르프교육에서 작도 지도 내용 비교 분석 연구 - 초등학교 수학에서 컴퍼스의 쓰임을 중심으로 - (The Comparison Study on the Geometric Construction between Korean Public School and Waldorf Education -Focused on the Usages of Compass in Elementary School-)

  • 조영미
    • 한국초등수학교육학회지
    • /
    • 제20권4호
    • /
    • pp.541-561
    • /
    • 2016
  • 초등학교 수학의 컴퍼스 관련 내용은 중학교 작도 교육과 연계될 수 있다. 활동주의 교육의 소재가 될 수 있는 작도를 지원할 수 있도록 초등학교 내용에서 수정 보완할 점과 그 개선 방향을 찾고자 하였다. 이를 위해 우리나라 교육과정과 교과서 분석을 통해 초등학교 컴퍼스 관련 내용의 주요 특징을 추출하였고, 작도가 기하 교육의 핵심을 이루는 발도르프교육에서 작도 지도의 계열과 주요 특징을 살펴 보았다. 우리나라와 발도르프교육을 비교한 결과로, 컴퍼스 도입을 고학년으로 늦추기, 논증기하 이전에 형태 체험과정과 심미적 체험을 할 수 있는 과정을 추가하는 것 등을 제안하였다.

삼각면으로 정의된 3차원 건물 모델의 단순화 (Simplification of 3D building models for defined by triangles)

  • 오소정;이임평;김태현
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.301-304
    • /
    • 2009
  • 3차원 가시화는 3차원 공간정보를 효율적으로 제공하기 위하여 중요하다. 그러나 기존의 3차원 가시화 소프트웨어는 복잡한 다면체 모델들을 삼각면으로 분할하여 저장하여 불필요한 기하정보들을 포함한다. 따라서 본 연구는 불필요한 기하정보가 제거된 건물 모델을 생성하기 위하여 동일한 삼각면들을 병합하여 다각면으로 정의하는 기하학적 단순화를 수행한다. 이를 위하여, 3차원 모델에 포함된 기하학적 오류와 위상학적 오류들이 제거된 삼각면의 속성을 정의한다. 그리고 이웃면 정보를 생성하여 동일면을 병합하고 병합된 면의 경계점들을 정리함으로써 단순화를 수행한다. 제안된 방법의 수행 결과, 삼각면으로 정의된 복잡한 다면체 모델은 다각면으로 정의된 보다 단순한 다면체 모델로 단순화될 수 있었고 동일한 기하학적 정보를 포함하고 있으나 데이터의 크기가 매우 작아 신속하게 가시화를 수행할 수 있었다. 따라서 제안한 방법론은 3차원 건물모델의 가시화 시간을 크게 줄일 것이다.

  • PDF