• Title/Summary/Keyword: 기포 속도

Search Result 191, Processing Time 0.03 seconds

Prediction of Two-phase Taylor Flow Characteristics in a Rectangular Micro-channel (사각 마이크로 채널 내 Taylor 유동 특성 예측에 대한 연구)

  • Lee, Jun Kyoung;Lee, Kwan Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.557-566
    • /
    • 2015
  • The characteristics of a gas-liquid Taylor (slug) flow in a square micro-channel with dimensions of $600{\mu}m{\times}600{\mu}m$ are experimentally investigated in this paper. The test fluids were nitrogen and water. The superficial velocities of the liquid and gas were in the ranges of 0.01 - 3 m/s and 0.1 - 3 m/s, respectively. The bubble and liquid slug lengths, bubble velocities, and bubble frequencies for various inlet conditions were measured by analyzing optical images obtained with a high-speed camera. It was found that the measured values (bubble and liquid slug lengths, bubble velocities) were not in good agreement with the values obtained using empirical models presented in the existing literature. Modified models for the bubble and liquid slug lengths and bubble velocity are suggested and shown to be in good agreement (${\pm}20$) with the measured values. Moreover, the bubble frequency could be predicted well by the relationship between the unit cell length and its velocity.

Measurement of Bubble Size in Flotation Column using Image Analysis System (이미지 분석시스템을 이용한 부선컬럼에서 기포크기의 측정)

  • An, Ki-Seon;Jeon, Ho-Seok;Park, Chul-Hyun
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.104-113
    • /
    • 2020
  • Bubble size in froth flotation has long been recognized as a key factor which affects the bubble residence time, the bubble surface area flux (Sb) and the carrying rate (Cr). This paper presents method of bubble size measurement, relationship between operating variables and gas dispersion properties in flotation column. Using high speed camera and image analysis system, bubble size has been directly measured as a function of operating parameters (e.g., superficial gas rate (Jg), superficial wash water rate (Jw), frother concentration) in flotation column. Relationship compared to measured and estimated bubble size was obtained within error ranges of ±15~20% and mean bubble size was 0.718mm. From this system the empirical relationship to control the bubble size and distribution has been developed under operating conditions such as Jg of 0.65~1.3cm/s, Jw of 0.13~0.52cm/s and frother concentration of 60~200ppm. Surface tension and bubble size decreased as frother concentration increased. It seemed that critical coalescence concentration (CCC) of bubbles was 200ppm so that surface tension was the lowest (49.24mN/m) at frother concentration of 200ppm. Bubble size tend to increase when superficial gas rate (Jg) decreases and superficial wash water rate Jw and frother concentration increase. Gas holdup is proportional to superficial gas rate as well as frother concentration and superficial wash water rate (at the fixed superficial gas rate).

A Study on the Heat Transfer Analysis of High-Temperature Single Bubble in Water (수중 고온 단일 기포의 열전달 해석 연구)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.117-123
    • /
    • 2024
  • Bubbles generated in water receive an upward buoyant force due to the density and pressure difference of the surrounding fluid. Additionally, the behavior, shape, and heat exchange process of bubbles vary depending on the viscosity, surface tension, rising speed, and size difference with the surrounding fluid. In this study, we modeled speed, and heat transfer of a high-temperature single bubble rising in a cylindrical water tank. For this purpose, velocity, and temperature of the bubbles were calculated using theoretical equations, to be compared with numerical simulation results. The numerical analysis was performed using a commercial software, and the stability of the numerical analysis with mesh size was confirmed through calculation of the grid convergence index. The numerical analysis of the rising speed and temperature of a single bubble showed the values to converge when the minimum cell size was 1/160 of the bubble diameter, and the temperature decrease was confirmed to be the same as that of the surrounding fluid within 0.05 seconds.

Investigation of Bubble Behavior in Rectangular Microchannels for Different Aspect Ratios (다른 세장비의 사각 마이크로채널 내의 기포 거동에 관한 연구)

  • Choi, Chi-Woong;Yu, Dong-In;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.471-479
    • /
    • 2010
  • The adiabatic two-phase flow in single rectangular microchannels was studied for different aspect ratios. The working fluids were liquid water and nitrogen gas. The hydraulic diameters of the rectangular microchannels were 490, 322, and $143\;{\mu}m$, and the widths of the microchannels were around $500\;{\mu}m$. The two-phase flow pattern was visualized using a high-speed camera and a long-distance microscope. This study was focused on bubble flow regimes. From the visualized images, the bubble velocity, bubble length, number of bubbles, and void fraction were evaluated. Further, the pressure drop in a single bubble was evaluated by using a unit cell model. The bubble velocity is proportional to the superficial velocity. Further, the relationship between the void fraction and the volumetric quality is linear. The pressure drop in a single elongated bubble is strongly related to the aspect ratio. Finally, the new correlation about the pressure drop of a single elongated bubble in the rectangular microchannel was proposed.

Bubble Properties in Bubble Columns with Electrolyte Solutions (전해질용액 기포탑에서 기포특성)

  • Yoo, D.J.;Lim, D.H.;Jeon, J.S.;Yang, S.W.;Kang, Y.
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.543-547
    • /
    • 2016
  • Bubble properties such as size (chord length) and rising velocity were investigated in a bubble column with electrolyte solutions, of which diameter was 0.152m and 2.5m in height, respectively. The size and rising velocity of bubbles were measured by using the dual electrical resistivity probe method. Effects of gas and liquid velocities and ionic strength of liquid phase on the size and rising velocity of bubbles were determined. The bubble size increased with increasing gas velocity but decreased with increasing liquid velocity or ionic strength of liquid phase. The rising velocity of bubbles increased with increasing gas velocity and decreased with increasing ionic strength of liquid phase, however, it showed a slight maximum value with varying liquid velocity. The size and rising velocity of bubbles were well correlated with operating variables.

Effect of Gas- and Liquid-injection Methods on Formation of Bubble and Liquid Slug at Merging Micro T-junction (마이크로 T자형 합류지점에서 기체 및 액체의 주입 방법이 기포 및 액체 슬러그 생성에 미치는 영향)

  • Lee, Jun Kyoung;Lee, Chi Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.227-236
    • /
    • 2016
  • In the present experimental study, the effect of gas- and liquid-injected methods on the formation of bubble and liquid slug at the merging micro T-junction of a square microchannel with dimensions $600{\mu}m{\times}600{\mu}m$ was investigated. Nitrogen and water were used as test fluids. The superficial velocities of the liquid and gas were in the range of 0.05 - 1 m/s, and 0.1 - 1 m/s, respectively, where the Taylor flow was observed. The bubble length, liquid slug length, bubble velocity, and bubble generation frequency were measured by analyzing the images captured using a high-speed camera. Under similar inlet superficial velocity conditions, in the case of gas injection to the main channel at the merging T-junction (T_gas-liquid), the lengths of the bubble and liquid slug were longer, and the bubble generation frequency was lower than in the case of liquid injection to the main channel at the merging T-junction (T_liquid-gas). On the other hand, in both cases, the bubble velocity was almost the same. The previous correlation proposed using experimental data for T_liquid-gas had predicted the present experimental data of bubble length, bubble velocity, liquid slug length, and bubble generation frequency for T_gas-liquid to be ~24%, ~9%, ~39%, ~55%, respectively.

Study of Attenuation and Dispersion of Ultrasound in Bubbly Liquids (기포운 내 초음파의 감쇠 및 분산에 관한 연구)

  • Choi, Young-Soo;Ohm, Won-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.251-257
    • /
    • 2010
  • This paper deals with the attenuation and dispersion of ultrasound in bubbly liquids. Bubble clouds in liquid are formed by a variety of mechanisms, leading to different bubble sizes and spectra. Our aim is to investigate how bubble sizes and spectra affect the attenuation and dispersion characteristics of bubbly liquids. Especially, we highlight the attenuation and dispersion behaviors of nano-bubbles, which have not been reported elsewhere. Computations show that the attenuation and dispersion characteristics of bubbly liquids depend heavily on the quality factors of constituent bubbles. The present study is expected to facilitate in-depth understanding of sound propagation in bubbly liquids.

Estimation of Cavitation Bubble Distribution Using Multi-Frequency Acoustic Signals (다중 주파수를 이용한 캐비테이션 기포의 분포량 추정)

  • Kim, Dae-Uk;La, Hyoung-Sul;Choi, Jee-Woong;Na, Jung-Yul;Kang, Don-Hyug
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.198-207
    • /
    • 2009
  • Distribution of cavitation bubbles relative to change of the sound speed and attenuation in the water was estimated using acoustic signal from 20 to 300 kHz in two cases that cavitation bubbles exist and do not exist. To study generation and extinction property of cavitation bubble, bubble distribution was estimated in three cases: change of rotation speed (3000-4000 rpm), surface area of blade ($32-98\;mm^2$) and elapsed time (30-120 sec). As a result, the radii of the generated bubbles ranged from 10 to $60{\mu}m$, and bubble radius of $10-20{\mu}m$ and $20-30{\mu}m$ was accounted for 45 and 25% of the total number of cavitation bubbles, respectively. And generation bubble population correlated closely with the rotating speed of the blades but did not correlate with the surface area of blade. It was observed that 80% of total bubble population disappeared within 2 minutes. Finally, acoustic data of bubble distribution was compared with optical data.

Heat Transfer Model and Energy Dissipation Rate in Bubble Columns with Continuous Operation (연속조작 기포탑에서 열전달 모델 및 에너지 소멸 속도)

  • Jang, Ji Hwa;Seo, Myung Jae;Lim, Dae Ho;Kang, Yong;Jung, Heon;Lee, Ho Tae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.587-592
    • /
    • 2009
  • Heat transfer model and energy dissipation rate were investigated to examine the heat transfer mechanism in bubble columns with continuous operation. The energy dissipation rate($E_D$) obtained from the unsteady state heat transfer model based on the surface renewal theory was significantly small, comparing with the hydrodynamic energy dissipation rate($P_v$) calculated from the overall hydrodynamic energy balance based on the behaviors and holdups of gas and liquid phases in the column. It was found from these results that the energy dissipation rate based on the surface renewal theory is independent of the hydrodynamic energy dissipation rate obtained from the overall hydrodynamic energy balance in the bubble column, in considering their mechanism. The different two energy dissipation rates were correlated in terms of operating variables within this experimental conditions, respectively.

A Review on Size, Shape and Velocity of a Bubble Rising in Liquid (총설: 액체 중에서 상승하는 기포의 크기, 형상 및 속도)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Accurate prediction of size, shape and velocity of a bubble rising through a liquid pool is very important for predicting the particulate removal efficiency in pool scrubbing, for designing engineering safety features to prepare for severe accidents in nuclear power plants, and for predicting the emission of fission products from MCCI (molten core-concrete interaction) process during severe accidents. In this review article, previous studies on the determination of the size, shape and rising velocity of a bubble in liquid are reviewed. Various theoretical and parameterization formulas calculating the bubble size, shape and velocity from physical properties of liquid and gas flowrate are compared. Recent studies tend to suggest simple parameterizations that can easily determine the bubble shape and rising velocity without iteration, whereas iteration has to be performed to determine the bubble shape and velocity in old theories. The recent parameterizations show good agreement with measured data obtained from experiments conducted using different liquid materials with very diverse physical properties, proving themselves to be very useful tools for researchers in related fields.