DOI QR코드

DOI QR Code

Effect of Gas- and Liquid-injection Methods on Formation of Bubble and Liquid Slug at Merging Micro T-junction

마이크로 T자형 합류지점에서 기체 및 액체의 주입 방법이 기포 및 액체 슬러그 생성에 미치는 영향

  • Received : 2015.10.06
  • Accepted : 2016.02.02
  • Published : 2016.04.01

Abstract

In the present experimental study, the effect of gas- and liquid-injected methods on the formation of bubble and liquid slug at the merging micro T-junction of a square microchannel with dimensions $600{\mu}m{\times}600{\mu}m$ was investigated. Nitrogen and water were used as test fluids. The superficial velocities of the liquid and gas were in the range of 0.05 - 1 m/s, and 0.1 - 1 m/s, respectively, where the Taylor flow was observed. The bubble length, liquid slug length, bubble velocity, and bubble generation frequency were measured by analyzing the images captured using a high-speed camera. Under similar inlet superficial velocity conditions, in the case of gas injection to the main channel at the merging T-junction (T_gas-liquid), the lengths of the bubble and liquid slug were longer, and the bubble generation frequency was lower than in the case of liquid injection to the main channel at the merging T-junction (T_liquid-gas). On the other hand, in both cases, the bubble velocity was almost the same. The previous correlation proposed using experimental data for T_liquid-gas had predicted the present experimental data of bubble length, bubble velocity, liquid slug length, and bubble generation frequency for T_gas-liquid to be ~24%, ~9%, ~39%, ~55%, respectively.

본 논문에서는 $600{\times}600{\mu}m$ 사각 마이크로 채널에서 T자형 합류지점에서의 기체 및 액체의 주입방법이 기포 및 액체 슬러그의 생성에 미치는 영향을 실험을 통해 살펴보았다. 실험 유체로는 질소와 물을 사용하였으며, 액체 및 기체 겉보기 속도는 각각 0.05 - 1 m/s, 0.1 - 1 m/s 의 범위로 테일러 유동이 나타나는 구간에서 데이터를 얻었다. 기포 길이, 액체 슬러그 길이, 기포 속도 그리고 기포 생성 빈도를 고속 카메라를 사용하여 이미지 분석을 통해 측정하였다. 유사한 입구 겉보기 속도 조건에서, T-자형 합류지점의 main channel에 기체를 주입하는 방법(T_gas-liquid)이 액체를 주입하는 방법(T_liquid-gas)보다 기포와 액체 슬러그의 길이가 길었고 기포 생성 빈도는 낮았다. 한편, 두 주입방법에서 기포 속도는 유사하게 나타났다. T_liquid-gas 주입방법의 기존 예측 상관식은 T_gas-liquid 주입방법의 기포 길이, 기포 속도, 액체 슬러그 길이, 기포 생성 빈도 실험데이터를 각각 ~24 %, ~9 %, ~39 %, ~55 %로 예측하였다.

Keywords

References

  1. Shui, L., Eijkel, J. and Berg, A., 2007, "Multiphase Flow in Micro- and Nanochannels," Sensors and Actuators B 121, pp. 263-276. https://doi.org/10.1016/j.snb.2006.09.040
  2. Garstecki, P., Fuerstman, M. J., Stone, H. A. and Whitesides, G. M., 2006, "Formation of Droplets and Bubbles in a Microfluidic T-junction - Scaling and Mechanism of Break-up," Lab on a Chip 6, pp. 437-446. https://doi.org/10.1039/b510841a
  3. Van Steijn, V., Kreutzer, M. T. and Kleijn, C. R., 2007, " ${\mu}$-PIV Study of the Formation of Segmented Flow in Microfluidic T-junctions," Chem. Eng. Sci. 62, pp. 7505-7514. https://doi.org/10.1016/j.ces.2007.08.068
  4. Fu, T., Ma, Y., Funfschilling, D., Zhu, C. and Li, H. Z., 2010, "Squeezing-to-dripping Transition for Bubble Formation in a Microfluidic T-junction," Chem. Eng. Sci. 65, pp. 3739-3748. https://doi.org/10.1016/j.ces.2010.03.012
  5. Pohorecki, R. and Kula, K., 2008, "A Simple Mechanism of Bubble and Slug Formation in Taylor Flow in Microchannels," Chem. Eng. Research and Design. 86, pp. 997-1001. https://doi.org/10.1016/j.cherd.2008.03.013
  6. Yun, J., Lei, Q., Zhang, S., Shen, S. and Yao, K., 2010, "Slug Flow Characteristics of Gas-miscible Liquids in a Rectangular Microchannel with Cross and T-shaped Junctions," Chem. Eng. Sci. 65, pp. 5256-5263. https://doi.org/10.1016/j.ces.2010.06.031
  7. Qian, D. and Lawal, A., 2006, "Numerical Study on Gas and Liquid Slugs for Taylor Flow in a T-junction Microchannel," Chem. Eng. Sci. 61, pp. 7609-7625. https://doi.org/10.1016/j.ces.2006.08.073
  8. Guo, F. and Chen, B., 2009, "Numerical Study on Taylor Bubble Formation in a Micro-channel T-junction Using VOF Method," Microgravity Sci. Technol. 21, pp. 51-58. https://doi.org/10.1007/s12217-009-9146-4
  9. Mansour, M., Kawahara, A. and Sadatomi, M., 2014, "Numerical Investigation of Two-phase Flow Through a T-junction Microchannel Reactor," Journal of Environmental Science and Engineering A. 3, pp 42-54.
  10. Arias, S., Legendre, D., and Gonzalez-Cinca, R., 2012, "Numerical Simulation of Bubble Generation in a T-junction," Computers & Fluids 56, pp. 49-60. https://doi.org/10.1016/j.compfluid.2011.11.013
  11. Lee, K. G., Lee, J. K., Park, T., Kim, G. N. and Park, E. J., 2015, "Effect of Various Shapes of Mixer Geometry on Two-phase Flow Patterns in a Micro-channel," Korean J. Air-Condi. and Ref. Eng. 27, pp.75-80.
  12. Lee, J. K. and Lee, K. G., 2015, "Prediction of Two-phase Taylor Flow Characteristics in a Rectangular Micro-channel," Trans. Kor. Soc. Mech. Eng. B., Vol.3, pp. 557-569.
  13. V kel. N., 2009, "Design and Characterization of Gas-liquid Microreactors," Ph.D Thesis, Institut National Polytechnique de Toulouse, France.
  14. Liu, H., Vandu, Chippla O. and Krishna, Rajamani., 2005, "Hydrodynamics of Taylor Flow in Vertical Capillaries: Flow Regimes, Bubble Rise Velocity, Liquid Slug Length, and Pressure Drop," Ind. Eng. Chem. Res. 44, pp. 4884-4897. https://doi.org/10.1021/ie049307n
  15. Yue, J., Luo, L., Gonthier, Y., Chen, G. and Yuan, Q., 2009, "An Experimental Study of Air-water Taylor Flow and Mass Transfer Inside Square Microchannels," Chem. Eng. Sci. 64, pp. 3697-3708. https://doi.org/10.1016/j.ces.2009.05.026