• Title/Summary/Keyword: 기초모형실험

Search Result 679, Processing Time 0.031 seconds

Evaluation of In-situ Top Base Foundation Behavior using Calibration Chamber Test (모형토조실험을 통한 현장타설 팽이기초의 거동특성 연구)

  • Kim Hak-Moon;Kim Chan-Kuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.697-703
    • /
    • 2006
  • In this research, model tests for in-situ Top-Base Foundation are carried out in other to investigate the load delivering mechanism and the incremental effect of bearing capacity. According to the result of model tests, the load-settlement curves of both in-situ Top-Base(In-situ TBF) and Precast Top-Base Foundation(PC-TBF) showed similar results in term of the ground movement and effect of bearing capacity. Also, the range of vertical stresses delivered into ground was decreased with Top-Base method regarding other types foundations.

  • PDF

Load Sharing Ratio of Raft in Piled Raft on Granular Soils by Model Test (모형실험에 의한 조립토 지반에 설치된 말뚝지지 전면기초에서 래프트의 하중분담률)

  • Kwon, Ohkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.67-75
    • /
    • 2007
  • This study was undertaken in order to investigate the load bearing capacity of raft in a piled raft through the laboratory model tests, the numerical and analytical analyses. The model tests were conducted about a piled raft, the free-standing pile group, a single pile, as well as a shallow foundation under equal conditions. The pile spacing and length, group type and soil conditions were varied in the laboratory model tests. The experimental results were compared with those by the commercial program, DEFPIG, conventional methods and Phung's method. According to this study, the behavior of piled raft was affected by pile spacing, length and soil conditions. Phung's method proved to be reliable for estimating the experimental results.

  • PDF

Stability Investigation of a Foundation Located above Limestone Cavities Using Scaled Model Tests (석회암공동 상부 기초의 안정성 검토를 위한 모형실험 연구)

  • Kim, Jong-Woo;Heo, Seok
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.493-507
    • /
    • 2016
  • Scaled model tests were performed to investigate the stability of a foundation located above limestone cavities. Cavity shape was assumed to be an ellipse having 1/3 for the ratio of minor to major axis lengths. 12 different test models which have various depths, locations, inclinations, sizes and numbers of cavity were experimented and they were classified into 5 different groups. Crack initiation pressure, maximum pressure, deformation behaviors, failure modes and subsidence profiles of test models were obtained, and then the influences of those parameters on the foundation stability were investigated. No cavity model showed a general shear failure, whereas the models including various cavities showed the complicated three different failure modes which were only punching failure, both punching and shear failures, and double shear failure. The stability of foundation was found to be decreased as the cavity was located at shallower depth, the size and number of cavity were increased. Differential settlements appeared when the cavity was located under the biased part of foundation. Furthermore, subsidence profiles were found to depend on the distribution of underground cavities.

An Analysis of Deformation on Soft Clay Layer by Model Test (모형실험에 의한 연약점토지반의 변형해석)

  • 강병선
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.51-60
    • /
    • 1988
  • 기초지반에 대한 응력·변형률관계를 규명하기 위하여 소성론에 기초를 둔 구성방정식이 폭넓게 이용되고 있다. 본문은 성토나 강성기초와 같은 지반구조물을 연약점토지반에 축조하였을 때에 발생하는 변형에 관해 연구코저 한 것이다. 본 연구를 위하여 2차원모형토조를 제작, 재하실험한 시료를 재하실험을통하여 침하, 융기, 측방변위등을 측정하고 이들을 여러구함식과 비교고찰하였다. 구성식으로서는 한계상태개념에 근거를 둔 Cam-clay, Modified Cam-clay그리고 시간의존성을 고려한 탄·정감성 model인 Sakiguchi model을 이용하고 이들을 수치해를 통해 고찰하였다. 본 모형실험에 의하면 변형을 예측하는데 있어서 ModifiedICam-clay model이 Original Cam-clay"model 보다 실측치에 가까웠으며 또한 시간의존성을 고려한 탄·점견성 model인 Sekiguchi model'는 본 실험에서처럼 단기간의 실험에서는 변형의 creep조건을 만족시키지 못하므로 현장조건에 따라 잘- 판단하여 적용하여 야할 것으로 판단 된다.

  • PDF

Centrifuge Model Tests on Sliding Behavior of Cantilever Retaining Wall due to Surcharges (과재하중에 의한 역T형 옹벽의 활동거동에 관한 원심모형실험)

  • 유남재;유건선;이명욱;이종호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.153-160
    • /
    • 2000
  • 본 연구는 과제하중의 재하폭과 재하위치를 매개변수로 변화시켜 옹벽의 뒤채움재 상부 지표면에서 제한폭의 과재하중작용시 그의 활동거동에 관한 실험적, 수치적 해석적 연구이다. 중력 수준을 1g, 20g,40g로 변화시켜 수행한 원심모형실험을 통해 구한 기초의 극한지지력 및 하중-침하특성, 하중-옹벽수평변위특성에 관하여 조사연구 하였다. 또한, 옹벽의 활동으로 인한 지반파괴의 영향을 받기 시작하는기초의 재하위치를 추정하기 위하여 종래의 얕은 기초의 극한지지력 실험을 수행하여 이들 결과와 함께 비교하였다. 한편, 모형실험결과와 기존의 이론식을 수정보완한 해석 결과와 비교분석하였다.

  • PDF

모의실험을 통한 가산위험모형에 대한 적합도검정법들의 비교

  • 김진흠
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.61-71
    • /
    • 1996
  • Kim and Song(1995)과 Kim and Lee(1996)는 하나의 이지공변량(binary covariate)을 갖는 가산위험모형(additive risk model)의 적합도검정법(goodness-of-fit test)을 제안했다. 전자는 모수의 가중추정량들의 차에 기초한 검정법이며 후자는 마팅게일잔차(martingale residual)에 기초한 검정법이다. 본 논문에서는 모의실험을 통하여 두 검정법을 비교하였다.

  • PDF

Evaluation of Rocking Behaviors During Earthquake for the Shallow Foundation System on the Weathered Soil Using Dynamic Centrifuge Test (동적 원심모형실험을 이용한 풍화토 지반에 놓인 얕은기초 시스템의 지진 시 회전 거동 특성 평가)

  • Ha, Jeong-Gon;Jo, Seong-Bae;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.5-16
    • /
    • 2017
  • Rocking behavior of shallow foundation during the earthquake can reduce the seismic load of the superstructure. The dynamic centrifuge tests were performed to investigate the availability of using rocking behavior for the weathered soil condition. The centrifuge test model was composed of the weathered soil, shallow foundation and single degree of freedom structure. And the accelerations of soil, foundation and structure, and the foundation settlement were measured during the earthquake. From the test result, the seismic load of the structure for the strong earthquake input was reduced by the rocking behavior with foundation uplift and the maximum foundation settlement was less than 0.5% of the foundation width. This shows the potential that the rocking foundation concept can be used in the economical seismic design of foundation for the weathered soil in the future with additional research and verification.

Effect of Foundation Stiffness on Behavior of Soil-reinforced Segmental Retaining Walls (기초지반의 강성이 보강토 옹벽의 거동에 미치는 영향)

  • 유충식;김주석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.7-19
    • /
    • 2002
  • This paper presents the results of an investigation on the effect of foundation stiffness on the performance of soil-reinforced segmental retaining walls (SRWalls). Laboratory model tests were performed using a reduced-scale physical model to capture the fundamentals of the manner in which the foundation stiffness affects the behavior of SRWalls. A series of finite-element analyses were additionally performed on a prototype wall in order to supplement the findings from the model tests and to examine full-scale behavior of SRWalls encountered in the field. The results of the present investigation indicate that lateral wall displacements significantly increase with the decrease of the foundation stiffness. Also revealed is that the increase in wall displacements is likely to be caused by the rigid body movement of the reinforced soil mass with negligible internal deformation within the reinforced soil mass. The findings from this study support the current design approaches, in which the problem concerning the foundation condition are treated in the frame work of the external stability rather than the internal stability. The implications of the findings from this study to current design approaches are discussed in detail.

A Study on the Model Test for Estimating Dynamic Vertical Load Added to Shallow Foundation for Machine (진동기 얕은기초에 추가되는 동적 연직하중 산정을 위한 모형실험 방안 연구)

  • Ha, Ik-Soo;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.157-165
    • /
    • 2020
  • At present, there are no clearly stated criteria or theories in calculating additional vertical dynamic loads that occur at the machine foundation due to vibration and reflecting them in the design at home and abroad. According to the domestic standard, although it is not a serious vibration condition, the additional dynamic load due to vibration is considered up to 100% of the static load. This is an extremely conservative design. The purpose of this study is to propose a model test method for evaluating the quantitative magnitude of additional dynamic loads that are generated at certain static loads due to vertical mechanical vibrations. As preliminary basic tests for the model tests, the test for evaluating the effects of reflective wave that may occur within a limited size soil box and the test for estimating the natural frequency of the devised model soil-foundation system were carried out. From the analysis of results for basic tests, a method to minimize the influence of the reflected wave was prepared, and the effect of the resonance of the model system was minimized during the model tests. After the basic tests, the main model tests were conducted. Through the proposed main test, the quantitative magnitude of additional dynamic loads caused by machine vibration on a shallow foundation for machine on medium dense sand foundations were evaluated. From the results of the model test, the feasibility of design applied at home and abroad was reviewed.

Effect of Skirt Length on Behavior of Suction Foundations for Offshore Wind Turbines Installed in Dense Sand Subjected to Earthquake Loadings (조밀한 모래지반에 설치된 해상풍력 석션기초의 스커트길이에 따른 지진하중시 거동특성)

  • Choo, Yun Wook;Olalo, Leonardo;Bae, Kyung-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.202-211
    • /
    • 2016
  • This study aims to analyze seismic responses of suction foundations for offshore wind turbine. For this purpose, dynamic centrifuge model tests were carried out. The skirt length of the suction foundation is a critical element for bearing mechanism against environmental loads. Thus, dynamic centrifuge model tests were performed and analyzed for three suction foundation models with the ratios of skirt length to suction foundation diameter of 0.5, 0.75, and 1 installed in dense sand. As results, the acceleration amplification at the suction foundation, residual settlement, and residual tilting angle were compared.