Browse > Article
http://dx.doi.org/10.7843/kgs.2017.33.6.5

Evaluation of Rocking Behaviors During Earthquake for the Shallow Foundation System on the Weathered Soil Using Dynamic Centrifuge Test  

Ha, Jeong-Gon (Dept. of Civil and Environmental Engrg., KAIST)
Jo, Seong-Bae (Infrastructure Research Center, K-water Institute)
Park, Heon-Joon (Dept. of Civil and Environmental Engrg., KAIST)
Kim, Dong-Soo (Dept. of Civil and Environmental Engrg., KAIST)
Publication Information
Journal of the Korean Geotechnical Society / v.33, no.6, 2017 , pp. 5-16 More about this Journal
Abstract
Rocking behavior of shallow foundation during the earthquake can reduce the seismic load of the superstructure. The dynamic centrifuge tests were performed to investigate the availability of using rocking behavior for the weathered soil condition. The centrifuge test model was composed of the weathered soil, shallow foundation and single degree of freedom structure. And the accelerations of soil, foundation and structure, and the foundation settlement were measured during the earthquake. From the test result, the seismic load of the structure for the strong earthquake input was reduced by the rocking behavior with foundation uplift and the maximum foundation settlement was less than 0.5% of the foundation width. This shows the potential that the rocking foundation concept can be used in the economical seismic design of foundation for the weathered soil in the future with additional research and verification.
Keywords
Seismic load; Centrifuge test; Rocking Foundation; Shallow Foundation; Weathered Soil;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, S. H., Choo, Y. W., and Kim, D. S. (2013), "Performance of an Equivalent Shear Beam (ESB) Model Container for Dynamic Geotechnical Centrifuge Tests", Soil Dynamics and Earthquake Engineering, Vol.44, pp.102-114.   DOI
2 Paolucci, R., Figini, R., and Petrini, L. (2013), "Introducing Dynamic Nonlinear Soil-Foundation-Structure Interaction Effects in Displacement-Based Seismic Design", Earthquake Spectra, Earthquake Engineering Research Institute, Vol.29, No.2, pp.475-496.   DOI
3 Shirato, M., Kouno, T., Asai, R., Nakatani, S., Fukui, J., and Paoulucci, R. (2008), "Large-scale Experiments on Nonlinear behavior of Shallow Foundations Subjected to Strong Earthquakes", Soils and Foundations, Vol.48, No.5, pp.673-692.   DOI
4 Ko, K.W, Ha, J.G, Park, H.J., and Kim, D.S. (2016), "Evaluation of Rocking Mechanism for Embedded Shallow Foundation via Horizontal Slow Cyclic Tests", Journal of the Korean Geotechnical Society, Vol.32, No.8, pp.47-59.   DOI
5 Korean building code (2009), Architectural Institute of Korea.
6 Anastasopoulos, I., Kourkoulis, R., Gelagoti, F., and Papadopoulos, E. (2012), "Rocking Response of SDOF Systems on Shallow Improved Sand: An Experimental Study", Soil Dynamics and Earthquake Engineering, Vol.40, pp.15-33.   DOI
7 ASCE/SEI 41-13. (2014), Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers, Reston, VA.
8 BSSC (Building Seismic Safety Council). (1997), NEHRP guidelines for the seismic rehabilitation of buildings, Washington, DC.
9 Kim, D.K., Lee, S.H., Kim, D.S., Choo, Y.W., and Park, H.G. (2015), "Rocking Effect of a Mat Foundation on the Earthquake Response of Structures", Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, Vol.141, No.1, pp.4014085.   DOI
10 Kim, D. S., Kim, N. R., Choo, Y. W., and Cho, G. C. (2013), "A Newly Developed State-of-the-art Geotechnical Centrifuge in Korea", KSCE Journal of Civil Engineering, Vol.17, No.1, pp.77-84.   DOI
11 Kim, D. S., Lee, S. H., Choo, Y. W., and Perdriat, J. (2013), "Self-balanced Earthquake Simulator on Centrifuge and Dynamic Performance Verification", KSCE Journal of Civil Engineering, Vol.17, No.4, pp.651-661.   DOI
12 Kokkali, P., Abdoun, T., and Anastasopoulos, I. (2015), "Centrifuge Modeling of Rocking Foundations on Improved Soil", Journal of Geotechnical and Geoenvironmental Engineering, Vol.141, No.10, pp.4015041.   DOI
13 Kutter, B. L., Moore, M., Hakhamaneshi, M., and Champion, C. (2016), "Rationale for Shallow Foundation Rocking Provisions in ASCE 41-13", Earthquake Spectra, Vol.32, No.2, pp.1097-1119.   DOI
14 Deng, L., Kutter, B. L., and Kunnath, S. K. (2012a), "Centrifuge Modeling of Bridge Systems Designed for Rocking Foundations.", Journal of Geotechnical and Geoenvironmental Engineering, Vol.138, No.3, pp.335-344.   DOI
15 Deng, L. and Kutter, B. L. (2012b), "Characterization of Rocking Shallow Foundations Using Centrifuge Model Tests", Earthquake Engineering & Structural Dynamics, Vol.41, No.5, pp.1043-1060.   DOI
16 Deng, L., Kutter, B. L., and Kunnath, S. K. (2014), "Seismic Design of Rocking Shallow Foundations: Displacement-Based Methodology", Journal of Bridge Engineering, American Society of Civil Engineers, Vol.19, No.11, pp.4014043.
17 FEMA 356. (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Emergency Management Agency, Washington, D.C.
18 Gajan, S. and Kutter, B. L. (2008), "Capacity, Settlement, and Energy Dissipation of Shallow Footings Subjected to Rocking", Journal of Geotechnical and Geoenvironmental Engineering, Vol.134, No.8, pp.1129-1141.   DOI
19 Gajan, S. and Kutter, B. L. (2009), "Effects of Moment-to-Shear Ratio on Combined Cyclic Load-Displacement Behavior of Shallow Foundations from Centrifuge Experiments", Journal of Geotechnical and Geoenvironmental Engineering, Vol.135, No.8, pp.1044-1055.   DOI
20 Ha, J. G. (2017), Evaluation of the seismic rocking behavior for embedded shallow foundation via dynamic centrifuge test, Ph. D. Thesis, KAIST.
21 Hakhamaneshi, M., Kutter, B. L., Moore, M., and Champion, C. (2016), "Validation of ASCE 41-13 Modeling Parameters and Acceptance Criteria for Rocking Shallow Foundations.", Earthquake Engineering Research Institute, Vol.32, No.2, pp.1121-1140.