• Title/Summary/Keyword: 기체연소

Search Result 323, Processing Time 0.025 seconds

다목적실용위성 추진시스템의 추진제 소모율 분석

  • 김정수;한조영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.8-8
    • /
    • 2000
  • 하이드라진 단기액체엔진을 장착하고 궤도에서 임무를 수행하고 있는 다목적실용 위성 추진시스템 궤도비행 초기운용 자료에 근거하여 추진제 소모율을 산정 한다. 추진시스템은 위성의 궤도각과 비행고도 조정을 위한 속도증분($\Delta$V) 및 자세제어를 위한 추력을 발생시킨다. 단기액체 추진시스템에서 추진제 소모량은 추력기 밸브의 개폐시간에 비례하고 추력 생성 효율은 추진제의 연소기 유입압력에 종속한다. 일정질량의 가압 기체 압력에 의해 연료를 공급하는 추진시스템에서 잔류 추진제 량의 감소는 연소기 유입압력의 감소를 유발하고 추진기관의 효율을 저하시키는 요인으로 작용하여 임무말기로 진행함에 따라 동일한 운동량 생성에 보다 많은 연료소모가 이루어진다.(중략)

  • PDF

Facilitated Transport Membranes Based on PVA-g-PAA Graft Copolymer (PVA-g-PAA 가지형 공중합체 기반 촉진수송 분리막)

  • Park, Min Su;Kang, Miso;Park, Bo Ryoung;Kim, Jeong-Hoon;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.212-218
    • /
    • 2021
  • It is inevitable to generate incomplete combustion gases when mankind utilizes fossil fuels. From this point of view, gas separation process of combustion gas suggests the possibility of recycling CO gas. In this study, we fabricated a facilitated transport polymeric composite membrane for CO separation using AgBF4 and HBF4. The copolymer was synthesized via free-radical polymerization of poly(vinyl alcohol) (PVA) as a main chain and acrylic acid (AA) monomer as a side chain. The polymer synthesis was confirmed by FT-IR and the interactions of graft copolymer with AgBF4, and HBF4 were characterized by TEM. PVA-g-PAA graft copolymer membranes showed good channels for facilitated CO transport. In this perspective, we suggest the novel approach in CO separation membrane area via combination of grafting and facilitated transport.

Dynamic Characteristics of Coaxial Swirl-Jet Injector with Acoustic Excitation (동축형 스월-제트 인젝터의 음향가진에 따른 동특성)

  • Bae, Jinhyun;Kim, Taesung;Jeong, Seokgyu;Jeong, Chanyeong;Choi, Jeong Yeol;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.691-698
    • /
    • 2017
  • In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by applying excitation to jet or swirl flow using a loudspeaker. As a result of measuring the ITF according to the variation of feed system length, the ITF peak occurs at the resonance frequency of the space where the perturbed flow passes. When applying the excitation to the jet flow, as the jet flow increases up to 56 slpm, the magnitude of ITF decreases, and ITF increases thereafter. Therefore the larger the velocity difference between the jet and the swirl flow, the larger the ITF. In the case of the swirl excitation, the ITF decreases as the jet flow increases because of the decrease of the energy with respect to the constant flow at the downstream. This difference is caused by the location of the hot wire anemometer on the downstream of the injector center axis.

  • PDF

Dynamic Characteristics of Coaxial Swirl-jet Injector with Acoustic Excitation (동축형 스월-제트 분사기의 음향가진에 따른 동특성)

  • Bae, Jinhyun;Kim, Taesung;Jeong, Seokgyu;Jeong, Chanyeong;Choi, Jeong Yeol;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2018
  • In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by perturbing jet or swirl flow using a speaker as jet flow increases. As a result of measuring the ITF varying feed system length, a peak occurs at a resonance frequency of space where the perturbed flow passes. With jet excitation, the ITF magnitude decreases, but increases thereafter as increasing the jet flow. Therefore the larger the velocity difference between jet and swirl flow, the larger the ITF. With swirl excitation, ITF decreases as increasing the jet flow because of the energy decrease with respect to the constant downstream flow.

레이저를 이용한 연소진단 기술

  • 한재원;박승남;박철웅;이은성;이병준
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.169-175
    • /
    • 1995
  • 레이저 계측기술의 일반적인 장점인 비접촉방식에 의한 측정 가능, 측정의 정밀 정확도 향상, 높은 검지도 등의 장점으로 연소현상을 진단하기 위하여 여러 가지 레이저 게측지술이 사용되고 있다. 레이저를 이용한 연소진단 기술 중 가장 널리 사용되고 있는 CARS, 레이저 형광유도 기술, 축퇴사광파 혼합기술에 대한 연구를 수행하였다. CARS 기술은 관련 측정기술과 실제 화염의 구조를 분석하는 응용연구를 하였으며, 산업적인 응용을 위한 장비를개발하였다. 그리고, 레이저 형광 유도 기술을 적용하여 화염 내부에서의 OH 농도를 측정하였다. 최근 활발히 연구되고 있는 축퇴사광파 혼합기술을 이용한 연소기체 진단법을 연구하기 위하여, 분광기를 구성하고 화염 내에서 OH 농도를 측정하여 레이저 유도형광법으로 측정한 결과와 비교 하여 서로 일치하는 결과를 얻었다.

  • PDF

A Study on the Flow Control for Stable Combustion of Liquid Rocket (액체로켓의 연소안정을 위한 유량공급에 관한 실험적 연구)

  • Jang, Eun-Young;Park, Hee-Ho;Kim, Sun-Ki;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.6-11
    • /
    • 2000
  • In the pressurized propellant feed system of liquid rocket, feed pressure is decided chamber pressure of normal combustion state. However, during ignition period the initial chamber pressure is atmosphere. So, it may have overflow, hard-start and even critical damage of engine. This paper proposes an improved propellant feed system for the stable combustion of liquid rocket. Hot test were already performed to verify the presented propellent feed system. The proposed propellant feed system uses two steps - pre and main combustion - to prevent large pressure increase and uses cavitating venturis for stable flow rate in whole combustion. This system feeds the flow rate lesser than the designed flow rate, so combustion pressure reached pre-combustion pressure. Cavitating venturis offer unique flow control capabilities at normal and abnormal combustion state, because flow rate is solely dependent on upstream absolute pressure and fluid properties, but independent on downstream condition.

  • PDF

Spray Combustion Analysis for Unsteady State in Combustion Chamber of Liquid Rocket Engine Considering Droplet Fluctuation (액적변동을 고려한 액체로켓의 연소실 내 비정상 분무연소 해석)

  • Jeong, Dae-Kwon;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.175-178
    • /
    • 2006
  • A numerical study for spray combustion of fluctuated fuel and oxidizer droplets injected into combustion chamber has been conducted for the analysis of spray combustion considering characteristics of injector. The 2 dimensional unsteady state flow fields have been calculated by using QUICK Scheme and SIMPLER Algorithm. As the spray model, DSF model and Euler-Lagrange Scheme have been used. The sine Auction has been used for droplet fluctuation model of fuel and oxidizer, while the coupling effects of the droplets between gas phase and evaporated vapor have been calculated by using PSIC model.

  • PDF

A Study on The Pulsating Combustion of Premixed Gas in a Tube with a Honeycomb (다공성 물질에 의한 예혼합기의 맥동연소에 관한 연구)

  • 권영필;이동훈;현길학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.676-684
    • /
    • 1990
  • This study is on the pulsating combustion of premixed gas in a Rijke type combustor made of a honeycomb flame holder in a tube. Modelling for the onset condition of the oscillation is made by the ratio of the acoustic power generation based on the analysis of heat transfer to the power loss due to the thermoviscous dissipation and radiation. Experiment is performed for the characteristics of acoustic, thermal and combustion. It is shown that the theoretical modelling for the oscillation may be used as a limit condition. And the combustion analysis for the acoustic power generation is needed for better prediction of the onset condition. Experimental result shows that, by pulsation, the flame length is shortened and the flame temperature is decreased with increase in the heat transfer coefficient. The NO$_{x}$ concentration in the exhaust gas is significantly reduced by pulsation and the concentration of unburned hydrocarbon shows a little increase.e.

Methane Engine Combustion Test Facility Construction and Preliminary Tests (메탄엔진 연소시험설비 구축 및 예비 시험들)

  • Kang, Cheolwoong;Hwang, Donghyun;Ahn, Jonghyeon;Lee, Junseo;Lee, Dain;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.89-100
    • /
    • 2021
  • This paper deals with the construction of a combustion test facility and preliminary tests for hot-firing tests of a methane engine. First, the combustion test facility for a 1 kN-class thrust chamber using liquid oxygen/gas methane as propellants was designed and built. Before hot-firing tests, the cold-flow tests of each propellant line and the ignition tests of torch igniter/afterburner were performed to verify propellant supply stability of the combustion test facility, operation of the control and measurement system, and successful ignition. Finally, a preliminary hot-firing test was conducted to measure the combustion efficiency, heat flux, and combustion stability of a thrust chamber prototype. The constructed combustion test facility will be helpfully used for basic research and development of methane engine thrust chambers.

RETF 액체산소 공급설비 및 엔진 수류시험

  • Han, Yeoung-Min;Cho, Nam-Kyung;Kim, Seung-Han;Chung, Yong-Ghap;Park, Sung-Jin;Lee, Kwang-Jin;Kim, Young-Han;Moon, Il-Yoon
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.123-131
    • /
    • 2002
  • In this paper, characteristics of cryogenic liquid oxygen was examined during cold flow of KSR-III main engine at each stage. The effect of venting was examined at the stage of cooling and at the pressurization stage, the interaction between nitrogen gas and liquid oxygen was also examined. The characteristic of liquid oxygen in the engine manifold was analyzed. The results showed that venting was the primary role at the cooling process and the interaction of nitrogen gas and liquid oxygen in the run tank is limited at the surface area. With the sampling rate of 1KHz static and dynamic pressure were measured in the rocket engine manifold and in the LOX supply equipment. 32.5mm and 38mm orifice were installed for the tests and pressure condition of liquid oxygen was 23Bar, 29Bar, 41Bar. Increase of orifice diameter and decrease of supply pressure reduced the perturbation of pressure in engine manifold.

  • PDF