Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.3.212

Facilitated Transport Membranes Based on PVA-g-PAA Graft Copolymer  

Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kang, Miso (Department of Chemical and Biomolecular Engineering, Yonsei University)
Park, Bo Ryoung (C1 gas & Carbon Convergent Research Center, Chemical & Process Technology Division, Korea Research Institute of Chemical Technology)
Kim, Jeong-Hoon (C1 gas & Carbon Convergent Research Center, Chemical & Process Technology Division, Korea Research Institute of Chemical Technology)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.31, no.3, 2021 , pp. 212-218 More about this Journal
Abstract
It is inevitable to generate incomplete combustion gases when mankind utilizes fossil fuels. From this point of view, gas separation process of combustion gas suggests the possibility of recycling CO gas. In this study, we fabricated a facilitated transport polymeric composite membrane for CO separation using AgBF4 and HBF4. The copolymer was synthesized via free-radical polymerization of poly(vinyl alcohol) (PVA) as a main chain and acrylic acid (AA) monomer as a side chain. The polymer synthesis was confirmed by FT-IR and the interactions of graft copolymer with AgBF4, and HBF4 were characterized by TEM. PVA-g-PAA graft copolymer membranes showed good channels for facilitated CO transport. In this perspective, we suggest the novel approach in CO separation membrane area via combination of grafting and facilitated transport.
Keywords
facilitated transport; free-radical polymerization; grafting; gas separation membrane; carbon monoxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. U. Kim, J.-H. Kim, B. R. Park, K. C. Kim, and J. H. Kim, "Solid-state facilitated transport membrane for CO/N2 separation based on PHMEP-coPAA comb-like copolymer: Experimental and molecular simulation study", J. Membr. Sci., 620, 118939 (2021).   DOI
2 J. P. Jung, C. H. Park, J. H. Lee, J. T. Park, J.-H. Kim, and J. H. Kim, "Facilitated olefin transport through membranes consisting of partially polarized silver nanoparticles and PEMA-g-PPG graft copolymer", J. Membr. Sci., 548, 149 (2018).   DOI
3 Y. J. Kim, S. J. Moon, and J. H. Kim, "Highly-permeable SBS/UiO-66 mixed matrix membranes for CO2/N2 separation", Membr. J., 30, 319 (2020).   DOI
4 W. Guan, Y. Dai, C. Dong, X. Yang, and Y. Xi, "Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: A review", J. Appl. Polym. Sci., 137, 48968 (2020).   DOI
5 S. Adhikari and S. Fernando, "Hydrogen membrane separation techniques", Ind. Eng. Chem. Res., 45, 875 (2006).   DOI
6 M. E. J. Stettler, S. Eastham, and S. R. H. Barrett, "Air quality and public health impacts of UK airports. Part I: Emissions", Atmos. Environ., 45, 5415 (2011).   DOI
7 J. R. McConnell, R. Edwards, G. L. Kok, M. G. Flanner, C. S. Zender, E. S. Saltzman, J. R. Banta, D. R. Pasteris, M. M. Carter, and J. D. W. Kahl, "20th-Century industrial black carbon emissions altered arctic climate forcing", Science, 317, 1381 (2007).   DOI
8 W. Peters, A. R. Jacobson, C. Sweeney, A. E. Andrews, T. J. Conway, K. Masarie, J. B. Miller, L. M. P. Bruhwiler, G. Petron, A. I. Hirsch, D. E. J. Worthy, G. R. van der Werf, J. T. Randerson, P. O. Wennberg, M. C. Krol, and P. P. Tans, "An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker", Proc. Natl. Acad. Sci., 104, 18925 (2007).   DOI
9 C. Rodenbeck, S. Houweling, M. Gloor, and M. Heimann, "CO2 flux history 1982~2001 inferred from atmospheric data using a global inversion of atmospheric transport", Atmos. Chem. Phys., 3, 1919 (2003).   DOI
10 P. Brijesh and S. Sreedhara, "Exhaust emissions and its control methods in compression ignition engines: A review", Int. J. Automot. Technol., 14, 195 (2013).   DOI
11 A. A. Kiss, "Distillation technology - still young and full of breakthrough opportunities", J. Chem. Technol. Biotechnol., 89, 479 (2014).   DOI
12 M. C. Ferreira, A. J. A. Meirelles, and E. A. C. Batista, "Study of the fusel oil distillation process", Ind. Eng. Chem. Res., 52, 2336 (2013).   DOI
13 D. Korelskiy, M. Grahn, P. Ye, M. Zhou, and J. Hedlund, "A study of CO2/CO separation by submicron b-oriented MFI membranes", RSC Adv., 6, 65475 (2016).   DOI
14 D. De Meis, M. Richetta, and E. Serra, "Microporous inorganic membranes for gas separation and purification", Interceram - Int. Ceram. Rev., 67, 16 (2018).   DOI
15 W. Yave, A. Car, S. S. Funari, S. P. Nunes, and K.-V. Peinemann, "CO2-philic polymer membrane with extremely high separation performance", Macromolecules, 43, 326 (2010).   DOI
16 N. N. Dutta and G. S. Patil, "Developments in CO separation", Gas Sep. Purif., 9, 277 (1995).   DOI
17 T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, "Ultrapermeable, reverse-selective nanocomposite membranes", Science, 296, 519 (2002).   DOI
18 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI
19 S. R. Hong, S. Y. O, and H. K. Lee, "Gas permeation characteristics of CO2 and N2 through PEBAX/ZIF-8 and PEBAX/amineZIF-8 composite membranes", Membr. J., 30, 409 (2020).   DOI
20 J. Y. S. Lin, "Molecular sieves for gas separation", Science, 353, 121 (2016).   DOI
21 N. U. Kim, B. J. Park, J. H. Lee, and J. H. Kim, "High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA-co-POEM comb-like copolymer for CO2 capture", J. Mater. Chem. A, 7, 14723 (2019).   DOI
22 J. H. Kim, B. R. Min, H. S. Kim, J. Won, and Y. S. Kang, "Facilitated transport of ethylene across polymer membranes containing silver salt: Effect of HBF4 on the photoreduction of silver ions", J. Membr. Sci., 212, 283 (2003).   DOI
23 S. P. DiMartino, J. L. Glazer, C. D. Houston, and M. E. Schott, "Hydrogen/carbon monoxide separation with cellulose acetate membranes", Gas Sep. Purif., 2, 120 (1988).   DOI
24 H. J. Min, M. S. Park, M. Kang, and J. H. Kim, "Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors", Chem. Eng. J., 412, 127500 (2021).   DOI
25 S. J. Moon, H. J. Min, N. U. Kim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for CO2 capture", Membr. J., 29, 223 (2019).   DOI
26 J. Li, Z. Zhao, A. Kazakov, M. Chaos, F. L. Dryer, and J. J. Scire Jr., "A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion", Int. J. Chem. Kinet., 39, 109 (2007).   DOI
27 L. D. Prockop and R. I. Chichkova, "Carbon monoxide intoxication: An updated review", J. Neurol. Sci., 262, 122 (2007).   DOI
28 M. H. Mohamed, S. K. Elsaidi, T. Pham, K. A. Forrest, H. T. Schaef, A. Hogan, L. Wojtas, W. Xu, B. Space, M. J. Zaworotko, and P. K. Thallapally, "Hybrid ultra-microporous materials for selective xenon adsorption and separation", Angew. Chem.-Int. Edit., 55, 8285 (2016).   DOI
29 D. Aaron and C. Tsouris, "Separation of CO2 from flue gas: A review", Sep. Sci. Technol., 40, 321 (2005).   DOI
30 J. H. Jo and W. S. Chi, "Review on membrane materials to improve plasticization resistance for gas separations", Membr. J., 30, 385 (2020).   DOI