• Title/Summary/Keyword: 기업데이터 분석

Search Result 2,116, Processing Time 0.032 seconds

An Understanding of Domestic Construction Clients' Tender Behavior (투찰률을 통한 국내 건설업체들의 입찰행태에 대한 이해)

  • Bae, Juhyeon;Han, SangUk;Kim, Byungi
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.1
    • /
    • pp.74-79
    • /
    • 2018
  • The establishment of an effective bidding system is critical to ensure both the high quality of civil infrastructure and proper earning of contractors. However, the continuous changes of a bidding system in South Korea reveal that problems such as a dumping or high price winning have not been fully resolved yet. This study thus aims at understanding the bidding behavior and strategies of contractors by analyzing a tender ratio in historical data. Multiple regression analysis is conducted to understand the effect of internal and external factors (e.g., estimated cost, combined value of construction performance evaluation) on a tender ratio. The results statistically show that such factors affect the tender ratio an individual bidder determines and have the varying effect on the tender ratio by contractors' firm size.

An Empirical Study on the Determinants of Innovation Performance of SMEs in the Daejeon and Chungcheong Region (지역혁신체제관점에서의 대전·충청지역 중소기업 혁신성과 결정요인에 관한 실증적 연구)

  • Kim, Young-Jin;Kim, Byung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.102-111
    • /
    • 2016
  • This study aims to identify the characteristics of the regional innovation system(RIS) and the determinants of innovation performance of SMEs. Data were collected from a questionnaire survey on 64 SMEs in the Daejeon and Chungcheong regions to uncover the relationship between capabilities, regional innovation capacities and innovation performance. The moderating effects of regional innovation capacities on the relationship between firms' innovation capabilities and performance were also tested. Empirical results revealed that R&D, marketing and entrepreneurial orientation had positive effects. The moderating effect of regional innovation capabilities on the relationship between entrepreneurial orientation (risk taking) and performance was also confirmed.

A Study on Non-financial Factors Affecting the Insolvency of Social Enterprises (사회적기업의 부실에 영향을 미치는 비재무요인에 관한 연구 )

  • Yong-Chan, Chun;Hyeok, Kim;Dong-Myung, Lee
    • Journal of Industrial Convergence
    • /
    • v.21 no.11
    • /
    • pp.13-27
    • /
    • 2023
  • This study aims to contribute to the reduction of the failure rate and social costs resulting from business failures by analyzing factors that affect the insolvency of social enterprises, as the role of social enterprises is increasing in our economy. The data used in this study were classified as normal and insolvent companies among social enterprises (including prospective social enterprises) that were established between 2009 and 2018 and received credit guarantees from credit guarantee institutions as of the end of June 2022. Among the collected data, 439 social enterprises with available financial information were targeted; 406 (92.5%) were normal enterprises, and 33 (7.5%) were insolvent enterprises. Through a literature review, eight non-financial factors commonly used for insolvency prediction were selected. The cross-analysis results showed that four of these factors were significant. Logistic regression analysis revealed that two variables, including corporate credit rating and the personal credit rating of the representative, were significant. Financial factors such as debt ratio, sales operating profit rate, and total asset turnover were used as control variables. The empirical analysis confirmed that the two independent variables maintained their influence even after controlling for financial factors. Given that government-led support and development policies have limitations, there is a need to shift policy direction so that various companies aspiring to create social value can enter the social enterprise sector through private and regional initiatives. This would enable the social economy to create an environment where local residents can collaborate to realize social value, and the government should actively support this.

Research on the Application Methods of Big Data within SME Financing: Big data from Trading-area (소상공인의 자금공급 확대를 위한 빅데이터 활용 방안연구)

  • Lee, Ju Hee;Dong, Hak Lim
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.3
    • /
    • pp.125-140
    • /
    • 2018
  • According to statistics, it is shown that domestic SMEs rely on bank loans for the majority of fund procurement. From financial information shortage (Thin file) that does not provide information necessary for credit evaluation from banks such as financial statements. In order to overcome these problems, recently, in alternative finance such as P2P, using differentiated information such as demographics, trading information and the like utilizing Fintech instead of existing financial information, small funds A new credit evaluation method has been expanding to provide SMEs with small amounts of money. In this paradigm of environmental change, in this research, credit evaluation which can expand fund supply to SMEs by utilizing big data based on trade area information such as sales fluctuation, location conditions etc. In this research, we try to find such a solution. By analyzing empirically the big data generated in the trade area, we verify the effectiveness as a credit evaluation factor and try to derive the main parameters necessary for the business performance evaluation of the founder of SMEs. In this research, for 17,116 material businesses in Seoul City that operate the service industry from 2009 to February 2018, we collect trade area information generated for each business location from Big Data specialized company NICE Zini Data Co., Ltd.. We collected and analyzed the data on the locations and commercial areas of the facilities that were difficult to obtain from SMEs and analyzed the data that affected the Corporate financial Distress. It is possible to refer to the variable of the existing unused big data and to confirm the possibility of utilizing it for efficient financial support for SMEs, This is to ensure that commercial lenders, even in general commercial banks, are made to be more prominent in one sector of the financing of SMEs. In this research, it is not the traditional financial information about raising fund of SMEs who have basically the problem of information asymmetry, but a trade area analysis variable is derived, and this variable is evaluated by credit evaluation There is differentiation of research in that it verified through analysis of big data from Trading-area whether or not there is an effect on.

Design and Implementation of Spatially-enabled Integration Management System for a gCRM (gCRM을 위한 공간 데이터 통합관리 시스템의 설계 및 구현)

  • Kim, Sam-Geun;Moon, Il-Hwan;Ahn, Jae-Geun
    • The KIPS Transactions:PartD
    • /
    • v.18D no.1
    • /
    • pp.57-66
    • /
    • 2011
  • Recently, the necessity of new methods of spatial data integration and analysis in CRM has been increased since it is acknowledged that about eighty percent of all data stored in corporate databases has a spatial component. But conventional CRM systems are either incapable of managing spatial data or are not user-friendly when doing so. This paper has designed and implemented spatially-enabled integration management system that can manage consistently both enterprise and spatial data through a legacy CRM system and object-oriented database and additionally support spatial analysis and map visualization for a gCRM. Through implementation, it is demonstrated that the proposed system can facilitate effectively spatial data management and analysis in a legacy CRM system.

A Study on Metadata for Using Construction Information (건설 정보 활용을 위한 메타데이터 연구)

  • Kim, Jin-Man;Hwang, Doo-Won;Song, Young-Woong;Choi, Yoon-Ki
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.848-852
    • /
    • 2007
  • Recently the domestic construction companies have been occurred to the various demand of information. Also information quantity is increasing. But using information have been stated in low why large information quantity. The other side, the various Metadata have been proposing in the many field for an effective search and an application. So the Metadata for using construction information must be built. In this study, we have founded information of construction companies, present condition of information, concept of Metadata and recent report. And we have presented the Metadata system model and building process of information system. We have analyzed the Metadata element of construction. This study is the foundation for the Metadata using system.

  • PDF

스톰을 기반으로 한 실시간 SNS 데이터 분석 시스템

  • Lee, Hyeon-Gyeong;Go, Gi-Cheol;Son, Yeong-Seong;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.435-436
    • /
    • 2015
  • In order to analyze and maximize efficiency of advertise, business put more importance on SNS. Especially, keyword extraction analyses based on Hadoop receive attention. The existing keyword extraction analyses have mostly MapReduce processes. Due to that, it causes problems data base would not update in real time like SNS system. In this study, we indicate limitations of the existing model and suggest new model using Storm technique to analyze data in real time.

  • PDF

A Study on the Service Model Construction for the Reputation Analysis on Big Data (빅 데이터 평판분석을 위한 서비스 모델구축에 관한 연구)

  • Kang, Min-Shik;Song, Eun-Jee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.848-849
    • /
    • 2014
  • 실시간으로 고객의 피드백을 파악할 수 있는 방법으로 SNS 등과 같은 빅 데이터를 이용하는 것이 매우 효율적 이다. 따라서 최근 기업들은 온라인상의 빅 데이터 평판을 분석하는 시스템들을 이용하여 고객피드백에 관한 정보를 수집하고 분석하고 있다. 본 논문에서는 온라인상의 고객피드백의 보다 정확하고 효율적인 정보 수집과 분석이 가능하며 분석 지식체계의 근간을 이루는 서비스 모델구축 방법을 제안한다. 서비스 모델 구축방법은 서비스 산업군에 대한 시소러스 분석 체계를 정의하고 데스트베드 대상의 인터뷰 등을 통하여 분류체계 기본 방향을 수립하며 타겟 대상의 특화된 수집원 및 범위를 설정하는 방법 등으로 이루어진다.

  • PDF

Public Sentiment Analysis of Korean Top-10 Companies: Big Data Approach Using Multi-categorical Sentiment Lexicon (국내 주요 10대 기업에 대한 국민 감성 분석: 다범주 감성사전을 활용한 빅 데이터 접근법)

  • Kim, Seo In;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.45-69
    • /
    • 2016
  • Recently, sentiment analysis using open Internet data is actively performed for various purposes. As online Internet communication channels become popular, companies try to capture public sentiment of them from online open information sources. This research is conducted for the purpose of analyzing pulbic sentiment of Korean Top-10 companies using a multi-categorical sentiment lexicon. Whereas existing researches related to public sentiment measurement based on big data approach classify sentiment into dimensions, this research classifies public sentiment into multiple categories. Dimensional sentiment structure has been commonly applied in sentiment analysis of various applications, because it is academically proven, and has a clear advantage of capturing degree of sentiment and interrelation of each dimension. However, the dimensional structure is not effective when measuring public sentiment because human sentiment is too complex to be divided into few dimensions. In addition, special training is needed for ordinary people to express their feeling into dimensional structure. People do not divide their sentiment into dimensions, nor do they need psychological training when they feel. People would not express their feeling in the way of dimensional structure like positive/negative or active/passive; rather they express theirs in the way of categorical sentiment like sadness, rage, happiness and so on. That is, categorial approach of sentiment analysis is more natural than dimensional approach. Accordingly, this research suggests multi-categorical sentiment structure as an alternative way to measure social sentiment from the point of the public. Multi-categorical sentiment structure classifies sentiments following the way that ordinary people do although there are possibility to contain some subjectiveness. In this research, nine categories: 'Sadness', 'Anger', 'Happiness', 'Disgust', 'Surprise', 'Fear', 'Interest', 'Boredom' and 'Pain' are used as multi-categorical sentiment structure. To capture public sentiment of Korean Top-10 companies, Internet news data of the companies are collected over the past 25 months from a representative Korean portal site. Based on the sentiment words extracted from previous researches, we have created a sentiment lexicon, and analyzed the frequency of the words coming up within the news data. The frequency of each sentiment category was calculated as a ratio out of the total sentiment words to make ranks of distributions. Sentiment comparison among top-4 companies, which are 'Samsung', 'Hyundai', 'SK', and 'LG', were separately visualized. As a next step, the research tested hypothesis to prove the usefulness of the multi-categorical sentiment lexicon. It tested how effective categorial sentiment can be used as relative comparison index in cross sectional and time series analysis. To test the effectiveness of the sentiment lexicon as cross sectional comparison index, pair-wise t-test and Duncan test were conducted. Two pairs of companies, 'Samsung' and 'Hanjin', 'SK' and 'Hanjin' were chosen to compare whether each categorical sentiment is significantly different in pair-wise t-test. Since category 'Sadness' has the largest vocabularies, it is chosen to figure out whether the subgroups of the companies are significantly different in Duncan test. It is proved that five sentiment categories of Samsung and Hanjin and four sentiment categories of SK and Hanjin are different significantly. In category 'Sadness', it has been figured out that there were six subgroups that are significantly different. To test the effectiveness of the sentiment lexicon as time series comparison index, 'nut rage' incident of Hanjin is selected as an example case. Term frequency of sentiment words of the month when the incident happened and term frequency of the one month before the event are compared. Sentiment categories was redivided into positive/negative sentiment, and it is tried to figure out whether the event actually has some negative impact on public sentiment of the company. The difference in each category was visualized, moreover the variation of word list of sentiment 'Rage' was shown to be more concrete. As a result, there was huge before-and-after difference of sentiment that ordinary people feel to the company. Both hypotheses have turned out to be statistically significant, and therefore sentiment analysis in business area using multi-categorical sentiment lexicons has persuasive power. This research implies that categorical sentiment analysis can be used as an alternative method to supplement dimensional sentiment analysis when figuring out public sentiment in business environment.

Technology Trends of AI for Big Data Knowledge Processing (빅데이터 지식처리 인공지능 기술동향)

  • Lee, H.J.;Ryu, P.M.;Lim, S.J.;Jang, M.K.;Kim, H.K.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.4
    • /
    • pp.30-38
    • /
    • 2014
  • 최근의 플랫폼 기술동향은 웹 기반 혹은 단순 의사소통이 가능한 모바일 플랫폼에서 빅데이터와 인공지능기술이 접목되면서 심층 질의응답이 가능한 차세대 지능형 지식처리 플랫폼으로의 진화가 진행 중이다. 선진국에서는 국가 차원 혹은 글로벌 기업의 주도하에 대형 장기 프로젝트가 진행 중이다. 국가 주도의 프로젝트로는 미국의 PAL, 유럽의 Human Brain, 일본의 Todai 프로젝트가 대표적인 예이며, 글로벌 기업의 경우는 IBM의 Watson, Google의 Knowledge Graph, Apple의 Sir가 대표적인 예이다. 본고에서는 차세대 지능형 플랫폼의 핵심기술인 인간과 기계의 지식소통을 위한 빅데이터 기반의 지식처리 인공지능 소프트웨어 기술의 개념과 국내외 기술 및 산업, 지식재산권 동향 등을 살펴보고 산업계 활용방안 및 발전방향에 대해 논하고자 한다.

  • PDF