This study is empirical research to enhance understanding of AI (artificial intelligence) training data project in South Korea. It primarily focuses on the various concerns regarding data quality from policy-executing institutions, data construction companies, and organizations utilizing AI training data to develop the most reliable algorithm for society. For academic contribution, this study suggests a theoretical foundation and research model for understanding AI training data quality and its antecedents, as well as the unique data and ethical aspects of AI. For this purpose, this study proposes a research model with important antecedents related to AI training data quality, such as data attribute factors, data building environmental factors, and data type-related factors. The study collects 393 sample data from actual practitioners and personnel from companies building artificial intelligence training data and companies developing artificial intelligence services. Data analysis was conducted through Fuzzy Set Qualitative Comparative Analysis (fsQCA) and Artificial Neural Network analysis (ANN), presenting academic and practical implications related to the quality of AI training data.
The Fourth Industrial Revolution brought the quantitative value of data across the industry and entered the era of 'Big Data'. This is due to both the rapid development of information & communication technology and the diversity & complexity of customer purchasing tendencies. An enterprise's core competence in the Big Data Era is to analyze and utilize the data to make strategic decisions for enterprise. However, most of traditional studies on Big Data have focused on technical issues and future potential values. In addition, these studies lacked interest in managing the quality and utilization levels of internal & external customer Big Data held by the entity. To overcome these shortages, this study attempted to derive influential factors by recognizing the quality management information systems and quality management of the internal & external Big Data. First of all, we conducted a survey of 204 executives & employees to determine whether Big Data quality management, Big Data utilization, and level management have a significant impact on corporate work efficiency & corporate management performance. For the study for this purpose, hypotheses were established, and their verifications were carried out. As a result of these studies, we found that the reasons that significantly affect corporate management performance are support from the management class, individual innovation, changes in the management environment, Big Data quality utilization metrics, and Big Data governance system.
The purpose of this study is to evaluate the operational efficiency of Chinese e-commerce companies and to present measures to improve efficiency. This paper selected 16 enterprises as the research objects, from the e-commerce demonstration enterprises of the Ministry of Commerce of China in 2017-2018, to conduct an empirical study on the operating efficiency of e-commerce enterprises. By using DEA method, we selected 3 input and 2 output indicators to measure the input-output efficiency of enterprises from input-oriented. Using different model in DEA, we calculated the technical efficiency, pure technical efficiency and scale efficiency, also efficiency based on the sample of 2018 and horizontal analysis from 2016 to 2018. The analysis showed that the overall efficiency of Chinese e-commerce companies was continuously improving, and that their business capabilities and business scale were also gradually improving. Through the calculation of efficiency, we evaluated the competitiveness of the e-commerce demonstration enterprises, and explored measures to improve their management efficiency. At the same time, it put forward some reasonable suggestions to adjust the scale, and enhance the competitive advantage.
Proceedings of the Korean Operations and Management Science Society Conference
/
2004.05a
/
pp.370-373
/
2004
특허 데이터 정보는 경쟁자 모니터링, 기술 평가, R&D 포트폴리오 관리 등 전략적 계획의 여러 목적으로 사용되고 있다. 특정 분야의 기술 구조를 시각화하기 위한 방법론으로 특허를 사용한 기술 지도를 2차원상에 표현하는 co-word 분석법이 이용되고 있으나, 이 방법론을 적용하여 기업이 가진 특허를 지도로 시각화하고 분석을 시도한 연구는 없었으며 특허 포트폴리오는 전체 기술을 시각화하는 데 많은 한계를 가지고 있다. 본 연구에서는 특정 기업의 일부 분야 특허에 대하여 co-word matrix를 작성하고 기술을 클러스터링하여 다차원 축적 기법(Muitidimensional Scaling)으로 기술 지도를 작성하였다. 또한, 두 경쟁기업의 기술지도를 비교하여 기업간의 cross-licensing 가능 영역을 보이고 시간 흐름에 따른 기업 기술의 동적 분석 등 다양한 분석방법을 제시하였다.
본 연구에서는 한국디자인진흥원의 우수디자인제품 선정이 기업의 경영성과에 미치는 영향에 대하여 분석하고, 상대적으로 경쟁력이 낮은 창업기업을 중심으로 경영성과에 대하여 연구하고자 하였다. KIDP의 2013년 통계에 따르면 제품 판매에 미치는 요소 중 디자인이 27.53%로 가장 큰 비중을 차지하고 있으며, 기업 규모에서는 대기업과 중기업에 비해 소기업이 제품판매에 미치는 요소 중 디자인 요소가 제일 높은 것으로 나타나고 있다. 또한 이번 연구를 위해 수집한 데이터의 업종별 추이를 살펴보면 기술 기반 업종이 도 소매업을 비롯한 기타 업종에 비해 증가율이 상대적으로 높게 나타나고 있는 것으로 나타나고 있다. 본 연구는 어려운 경영여건에서도 디자인의 중요성을 인식하고, KIDP로부터 우수디자인제품 선정을 받은 기업 중 186개(2013년, 2014년, 2015년)를 대상으로 업력이 7년 이하인 창업기업과 업력이 7년 이상인 계속기업의 경영성과에 차이가 있는지를 실증 분석하였다. 또한 우수디자인제품 선정기업 중 디자인의 역할이 상대적으로 크게 나타나는 제조업과 비제조업 간의 경영성과(매출액)의 차이에 대해서도 분석하였다. KIDP의 우수디자인제품 선정이 기업의 경영성과에 효과가 있는지를 선정연도를 전후 비교하여 "창업기업이 계속기업에 비해 경영성과(매출액)에 더욱 긍정적 효과를 미칠 것이다"라는 가설을 설정하고 실증분석을 한 결과는 창업기업이 경영성과에 긍정적인 영향을 미치는 것으로 나타났다. 또한 우수디자인제품 선정이 제조업과 창업기업 내의 제조기업 경영성과에도 유의미한 영향으로 나타나고 있다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.05a
/
pp.143-144
/
2016
빅 데이터 분석은 기존 데이터베이스 관리 도구로부터 데이터를 수집, 저장, 관리, 분석할 수 있는 역량을 말한다. 또한, 대량의 정형 또는 비정형 데이터 집합으로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 대부분의 빅 데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 해당된다. 글로벌 리서치 기관들은 빅 데이터를 2011년 이래로 최근 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅 데이터의 적용을 통해 가치 창출을 위한 노력을 기하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅 데이터 분석도구인 소셜 매트릭스를 활용하여 키워드 분석을 통해 창조경제 키워드 의미를 분석하고자 한다. 또한, 분석결과를 바탕으로 이론적 실무적 시사점을 제시하고자 한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.124-125
/
2016
빅데이터 분석은 기존 데이터베이스 관리 도구로부터 데이터를 수집, 저장, 관리, 분석할 수 있는 역량을 말한다. 또한 대량의 정형 또는 비정형 데이터 집합으로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 해당된다. 글로벌 리서치 기관들은 빅데이터를 2011년 이래로 최근 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅데이터의 적용을 통해 가치 창출을 위한 노력을 기울이고 있다. 본 연구에서는 다음 커뮤니케이션의 빅데이터 분석도구인 소셜 매트릭스를 활용하여 키워드 분석을 통해 콜라겐 키워드에 대한 의미를 분석하고자 한다. 또한 분석결과를 바탕으로 실무적 시사점을 제시하고자 한다.
This study investigated the relationships between the analytics capability and value of big data and business performance for big data analysts of business organizations. The values that big data can bring were categorized into transactional value, strategic value, transformational value, and informational value, and we attempted to verify whether these values lead to business performance. Two hundred samples from employees with experience in big data analysis were collected and analyzed. The hypotheses were tested with a structural equation model, and the capability of big data analytics was found to have a significant effect on the value and business performance of big data. Among the big data values, transactional value, strategic value, and transformational value had a positive effect on business performance, but the impact of informational value has not been proven. The results of this study are expected to provide useful information to business organizations seeking to achieve business performance using big data.
With the boom of platform businesses, digital transformation has become the most important topic for businesses. Digital transformation has now become the most urgent strategy for survival, from a strategy considered as an option to choose in the past. Many companies are desperately seeking the ways to be digitally transformed. Even though there have been many studies on digital transformation, most of them are on strategic and conceptual model levels based on simple case analyses. In this study, we analyze the benefits of data integration and network effects from it, based on platform business model at the core of digital transformation. The change based on platform can be categorized into the internal one for the integration of data and better decision making, and the external one for the expansion of the businesses and better prediction of consumer behaviors through the integration of external data sets by the platform business model based enterprises. While the progress for digital transformation is not mature enough yet, financial industry is one of the most promising industries for the change and realization of the aim of it with its relatively much more advanced IT infrastructure. Many companies are making various efforts for the integration of external data, and if the good results can be accomplished, financial industry will contribute to the advancement of digital transformation in other industries as well. For "My Data" project by Korean government, we suggest the data structure and transaction of data (of Korea) should be advanced and established more quickly.
Proceedings of the Korea Contents Association Conference
/
2019.05a
/
pp.461-462
/
2019
스마트팩토리는 정보통신기술(ICT)를 이용한 공정의 모든 데이터를 수집, 분석하여 제어하고 있다. 기존보다 방대한 양의 데이터를 처리하기 위해 기업들은 하둡을 이용한다. 다양한 크기의 데이터가 나타나는 환경에서 HDFS을 효율적으로 관리하기 위한 적응형 캐시 관리 기법을 제안한다. 제안하는 기법은 데이터 노드의 로컬 디스크의 공간 이용 효율성을 높이고 평균 데이터 크기를 분석하여 데이터 노드 확장시 적합한 블록 크기를 적용할 수 있게 관리한다. 성능 평가를 통해 제안하는 기법의 데이터 노드에서 로컬 디스크 효율 향상과 읽기와 쓰기 속도의 속도에 효과를 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.