• Title/Summary/Keyword: 기억 기반 학습

Search Result 132, Processing Time 0.028 seconds

A Study on the Development of Image Selection Algorithm for Educational Virtual Environment (교육용 가상환경을 위한 이미지 선택 알고리즘 개발에 관한 연구)

  • Kwon, Sooyoung;Kim, Minyoung;Cho, Yongjoo;Park, Kyoung Shin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1013-1016
    • /
    • 2009
  • 본 논문에서는 교육용 가상환경에서 학습자들에게 좀 더 효과적인 학습 효과를 주기 위해 학습 중에 보고 촬영했던 사진들을 자동으로 정리해서 사용자가 교육용 가상환경에서 체험했던 학습내용을 사진을 통해서 복습할 수 있도록 해주는 알고리즘을 소개한다. 기존의 날짜, 장소, 키워드 등의 정보를 이용하여 사진을 정리하는 알고리즘과는 달리, 본 논문에서는 사용자가 학습을 하면서 기억해야 할 중요한 내용이나 사용자의 관심도에 의해 사진 정리를 함으로써 사용자의 학습 효과를 높이는 것을 목적으로 하는 사진 정리 알고리즘을 소개한다. 이에 따라 알고리즘에서 학습적으로 중요한 사진을 뽑는 기준과 사용자의 관심도, 인지율 계산에 대해 설명하고 이 알고리즘을 기반으로 구현한 시스템을 설명한다. 또한 사용자 실험 분석을 하고 향후 연구방향에 대해 논한다.

A Single-Player Car Driving Game-based English Vocabulary Learning System (1인용 자동차 주행 게임 기반의 영어 단어 학습 시스템)

  • Kim, Sangchul;Park, Hyogeun
    • Journal of Korea Game Society
    • /
    • v.15 no.2
    • /
    • pp.95-104
    • /
    • 2015
  • Many games for English vocabulary learning, such as hangman, cross puzzle, matching, etc, have been developed which are of board-type or computer game-type. Most of these computer games are adapting strategy-style game plays so that there is a limit on giving the fun, a nature of games, to learners who do not like games of this style. In this paper, a system for memorizing new English words is proposed which is based on a single-player car racing game targeting youths and adults. In the game, the core of our system, a learner drives a car and obtains game points by colliding with English word texts like game items appearing on the track. The learner keeps on viewing English words being exposed on the track while driving, resulting in memorizing those words according to a learning principle stating viewing is memorization. To our experiment, the effect of memorizing English words by our car racing game is good, and the degree of satisfaction with our system as a English vocabulary learning tool is reasonably high. Also, previous word games are suitable for the memory enforcement of English words but our game can be used for the memorization of new words.

An Attention Method-based Deep Learning Encoder for the Sentiment Classification of Documents (문서의 감정 분류를 위한 주목 방법 기반의 딥러닝 인코더)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.268-273
    • /
    • 2017
  • Recently, deep learning encoder-based approach has been actively applied in the field of sentiment classification. However, Long Short-Term Memory network deep learning encoder, the commonly used architecture, lacks the quality of vector representation when the length of the documents is prolonged. In this study, for effective classification of the sentiment documents, we suggest the use of attention method-based deep learning encoder that generates document vector representation by weighted sum of the outputs of Long Short-Term Memory network based on importance. In addition, we propose methods to modify the attention method-based deep learning encoder to suit the sentiment classification field, which consist of a part that is to applied to window attention method and an attention weight adjustment part. In the window attention method part, the weights are obtained in the window units to effectively recognize feeling features that consist of more than one word. In the attention weight adjustment part, the learned weights are smoothened. Experimental results revealed that the performance of the proposed method outperformed Long Short-Term Memory network encoder, showing 89.67% in accuracy criteria.

A Memory-based Learning using Repetitive Fixed Partitioning Averaging (반복적 고정분할 평균기법을 이용한 메모리기반 학습기법)

  • Yih, Hyeong-Il
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1516-1522
    • /
    • 2007
  • We had proposed the FPA(Fixed Partition Averaging) method in order to improve the storage requirement and classification rate of the Memory Based Reasoning. The algorithm worked not bad in many area, but it lead to some overhead for memory usage and lengthy computation in the multi classes area. We propose an Repetitive FPA algorithm which repetitively partitioning pattern space in the multi classes area. Our proposed methods have been successfully shown to exhibit comparable performance to k-NN with a lot less number of patterns and better result than EACH system which implements the NGE theory.

  • PDF

An Object-Based Image Retrieval Techniques using the Interplay between Cortex and Hippocampus (해마와 피질의 상호 관계를 이용한 객체 기반 영상 검색 기법)

  • Hong Jong-Sun;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.95-102
    • /
    • 2005
  • In this paper, we propose a user friendly object-based image retrieval system using the interaction between cortex and hippocampus. Most existing ways of queries in content-based image retrieval rely on query by example or query by sketch. But these methods of queries are not adequate to needs of people's various queries because they are not easy for people to use and restrict. We propose a method of automatic color object extraction using CSB tree map(Color and Spatial based Binary をn map). Extracted objects were transformed to bit stream representing information such as color, size and location by region labelling algorithm and they are learned by the hippocampal neural network using the interplay between cortex and hippocampus. The cells of exciting at peculiar features in brain generate the special sign when people recognize some patterns. The existing neural networks treat each attribute of features evenly. Proposed hippocampal neural network makes an adaptive fast content-based image retrieval system using excitatory learning method that forwards important features to long-term memories and inhibitory teaming method that forwards unimportant features to short-term memories controlled by impression.

Support Vector Regression based on Immune Algorithm for Software Cost Estimation (소프트웨어 비용산정을 위한 면역 알고리즘 기반의 서포트 벡터 회귀)

  • Kwon, Ki-Tae;Lee, Joon-Gil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.17-24
    • /
    • 2009
  • Increasing use of information system has led to larger amount of developing expenses and demands on software. Until recent days, the model using regression analysis based on statistical algorithm has been used. However, Machine learning is more investigated now. This paper estimates the software cost using SVR(Support Vector Regression). a sort of machine learning technique. Also, it finds the best set of parameters applying immune algorithm. In this paper, software cost estimation is performed by SVR based on immune algorithm while changing populations, memory cells, and number of allele. Finally, this paper analyzes and compares the result with existing other machine learning methods.

Navigation Learning Ability and Visuospatial Functioning of Mild Cognitive Impairment Patients in Virtual Environments (경도인지장애환자의 가상환경 내 길찾기 학습능력과 시공간 기능에 관한 연구)

  • Park, Su-Mi;Lee, Jang-Han
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.507-512
    • /
    • 2008
  • This study investigated the navigation ability of patients with MCI in Virtual Environments(VE) and on the visual functioning. The participants consisted of elderly adults with/without MCI. Neuropsychological tests(RCFT, BVRT, TMT, and Digit Span), the Groton Maze Learning Test(12trials), and the VE navigation learning task(6 trials) were performed. As a result, there were significant group differences for the RCFT and BVRT, but not for the GMLT. For the VE task, there was a significant difference between the MCI and normal group and no interactions between the groups and trials were found. The VE task was correlated with The RCFT, the BVRT, and the GMLT and omnibus the RCFT and the BVRT accounted for 45% of VE performances. Thus, we concluded that patients with MCI are inferior to VE navigation and visual retention/memory play a role in navigation abilities.

  • PDF

Team Based Learning Experience and Effect on Study of Preliminary Learners on Medical Terminology (예비학습자의 간호영어 팀 기반 학습방법의 학습경험과 효과에 관한 연구)

  • You, Soo-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.7
    • /
    • pp.101-112
    • /
    • 2017
  • The purpose of this study is to find out what kind of experience and effect the learner - centered team - based learning (tbl)method has on pre - nursing learner's nursing English course. Participants were 12 preliminary nursing learner, it was analyzed through learning result recording, study observation, learning satisfaction, learner's report, peer evaluation. And described the meaning of the learning experience, individual and team scores were analyzed using frequency analysis, paired-t test. The results showed that the score of each team was higher than the score of individual in both. The tbl experience has been a form of intimacy with colleagues, a motivation for learning, self-study, easy to learn the medical terminology felt through repeated learning, to improve their score by having them secondary group test and they remembered it as a pleasant learning time.

Interactivity within large-scale brain network recruited for retrieval of temporally organized events (시간적 일화기억인출에 관여하는 뇌기능연결성 연구)

  • Nah, Yoonjin;Lee, Jonghyun;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.29 no.3
    • /
    • pp.161-192
    • /
    • 2018
  • Retrieving temporal information of encoded events is one of the core control processes in episodic memory. Despite much prior neuroimaging research on episodic retrieval, little is known about how large-scale connectivity patterns are involved in the retrieval of sequentially organized episodes. Task-related functional connectivity multivariate pattern analysis was used to distinguish the different sequential retrieval. In this study, participants performed temporal episodic memory tasks in which they were required to retrieve the encoded items in either the forward or backward direction. While separately parsed local networks did not yield substantial efficiency in classification performance, the large-scale patterns of interactivity across the cortical and sub-cortical brain regions implicated in both the cognitive control of memory and goal-directed cognitive processes encompassing lateral and medial prefrontal regions, inferior parietal lobules, middle temporal gyrus, and caudate yielded high discriminative power in classification of temporal retrieval processes. These findings demonstrate that mnemonic control processes across cortical and subcortical regions are recruited to re-experience temporally-linked series of memoranda in episodic memory and are mirrored in the qualitatively distinct global network patterns of functional connectivity.

Evaluation of multi-basin integrated learning method of LSTM for hydrological time series prediction (수문 시계열 예측을 위한 LSTM의 다지점 통합 학습 방안 평가)

  • Choi, Jeonghyeon;Won, Jeongeun;Jung, Haeun;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.366-366
    • /
    • 2022
  • 유역의 하천유량과 같은 수문 시계열을 모의 또는 예측하기 위한 수문 모델링에서 최근 기계 학습 방법을 활용한 연구가 활발하게 적용되고 있는 추세이다. 이러한 데이터 기반 모델링 접근법은 입출력 자료에서 관찰된 패턴을 학습하며, 특히, 장단기기억(Long Short-Term Memory, LSTM) 네트워크는 많은 연구에서 수문 시계열 예측에 대한 적용성이 검증되었으나, 장기간의 고품질 관측자료를 활용할 때 더 나은 예측성능을 보인다. 그러나 우리나라의 경우 장기간 관측된 고품질의 하천유량 자료를 확보하기 어려운 실정이다. 따라서 본 연구에서는 LSTM 네트워크의 학습 시 가용한 모든 유역의 자료를 통합하여 학습시켰을 때 하천유량 예측성능을 개선할 수 있는지 판단해보고자 하였다. 이를 위해, 우리나라 13개 댐 유역을 대상으로 대상 유역의 자료만을 학습한 모델의 예측성능과 모든 유역의 자료를 학습한 모델의 예측성능을 비교해 보았다. 학습은 2001년부터 2010년까지 기상자료(강우, 최저·최고·평균기온, 상대습도, 이슬점, 풍속, 잠재증발산)를 이용하였으며, 2011년부터 2020년에 대해 테스트 되었다. 다지점 통합학습을 통해 테스트 기간에 대해 예측된 각 유역의 일 하천유량의 KGE 중앙값이 0.74로 단일지점 학습을 통해 예측된 KGE(0.72)보다 다소 개선된 결과를 보여주었다. 다지점 통합학습이 하천유량 예측에 큰 개선을 달성하지는 못하였으며, 추가적인 가용 자료 확보와 LSTM 구성의 개선을 통해 추가적인 연구가 필요할 것으로 판단된다.

  • PDF