• Title/Summary/Keyword: 기액 이상류

Search Result 18, Processing Time 0.026 seconds

A Theoretical Analysis on Pressure Loss and Gas Volumetric Fraction of Gas-Liquid Two-Phase Flow (기액이상류의 압력손실과 가스상의 체적분율에 관한 이론적 해석)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.63-69
    • /
    • 2009
  • Gas volumetric fractions and pressure loss are very important parameters in understanding and predicting gas-liquid two-phase flows. They are also essential to design large heat exchanging system in many industries, boiler and refrigerating systems mounted at ships. This paper therefore presents a theoretical method of predicting the pressure loss and gas volumetric fractions in gas-liquid two-phase flows for the whole range of pipe inclinations. The theoretical analysis is based on the two-fluid stratified flow model. It also provides the results of the comparisons between this theoretical analysis results and previous experimental results.

  • PDF

Gas-Liquid Two-Phase Flow at Hyper-Gravity Conditions (과중력 환경에서의 기액이상류)

  • Choi, Bu-Hong;Choi, Ju-Yeol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.59-60
    • /
    • 2006
  • Some useful flow regime data are obtained from the experiments using the flight producing hyper-gravity(2g) conditions and on ground(1g) with the identical flow conditions. The flow regime data obtained at 1g and 2g conditions are compared with new dimensionless flow regime map using Fr, Bo and We number related with gravity, surface tension and inertia force.

  • PDF

Air-liquid Flow Characteristics of Riser of Air-lift Pump (공기양수펌프 Riser 내의 기액유동특성)

  • Lee, Cheol-Hee;Cho, Dae-Hwan;Choi, Ju-Yeol;Park, Chan-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.239-244
    • /
    • 2006
  • As an effective means to convey crushed materials from seabed to onboard ship, air-lift pump provides a reliable mechanism due to its simple configuration and easy-to-operate principle. The present study is focused on fundamental investigation of related performance through analysis program based on the gas-liquid two-phase flow in circular pipes. It is summarized as important result that an optimum air mass flow rate exists for the maximum lifted liquid mass flow rate in terms of a given submergence rates.

  • PDF

A Prediction of the Air-lift Pump Performance by gas-liquid Flow Charac teristics of Riser (Riser의 기액유동 특성에 따른 Air-lift 펌프의 성능예측)

  • 박찬수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.252-258
    • /
    • 1999
  • As an effective means to convey crushed materials from seabed to on board ship and to raise hazardous or abrasive liquids air-lift pump provides a reliable mechanism due to its simple config-uration and easy-to-operate principle. The present study is focused on fundamental investigation of related performance by the analysis program based on the gas-liquid two-phase flow in circular pipes. The program covers pump operating in isothermal and vertical two-phase flow with Newto-nian liquids. it is summarized as important result that an optimum air mass flow rate exists for the maximum lifted liquid mass flow rate in terms of a given submergence rates and furthermore attachment of downcomer gives little effects on riser performance the conveyed liquid flow rate increases with larger submergence rate.

  • PDF

An Experimental Study on the Centrifugal Pump Characteristics in Air-Water Two-Phase Flow (기액 이상류시의 원심펌프특성에 관한 실험적 연구)

  • Kim, Sung-Yoon;Lee, Sang-Il;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.685-692
    • /
    • 2006
  • In a general centrifugal pump, if it is operated in a two-phase flow the activity of the impeller usually degrades and occasionally losses its function. However, the effect of break down of centrifugal pump due to entrained air has not been clarified yet. This paper shows the air-water two-phase flow characteristics of closed type and semi-open type impellers. In a sing1e-phase flow, closed-type impeller has higher efficiency and head. But in air-water two-phase flow semi-open type impeller's rates of decreases of efficiency and head are decreased.

Characteristics of a Small Screw-type Centrifugal Pump Operating in Air-Water Two-Phase Flow (소형 스크류식 원심펌프의 기액 이상류 특성)

  • Kim, You-Taek;Tanaka, Kazuhiro;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.9-15
    • /
    • 1999
  • A screw-type centrifugal pump was manufactured to carry primarily solids and its impeller had a wide flow passage. However, there was an effect on the flow passage shape on delay of the choke due to entrained air not being clarified yet. Moreover, because its impeller has a particular shape, only few studies have tried to clarify the pump performance and details of internal flow pattern of that pump. For this reason, we carried out the pump performance experiment under air-water two-phase flow condition with different impeller tip clearances, pump rotational speeds and void fractions by using a small screw-type centrifugal pump designed to acquire basic data. In a general centrifugal pump, it was reported that there was a loss of pump head from single-phase flow to the choke due to air entrainment near the best efficiency point being large. However, the loss near the best efficient point in a screw-type centrifugal pump became less than that in a general centrifugal pump.

  • PDF

Pressure Distributions of a Screw-type Centrifugal Pump Operating in Air-Water Two-Phase Flow (기액 이상류시의 스크류식 원심펌프의 압력분포)

  • Kim, You-Taek;Choi, Min-Seon;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.39-45
    • /
    • 2001
  • It is reported recently that the pump head deterioration near the best efficiency point, from single-phase flow to the choke due to air entrainment became less in a screw-type centrifugal pump than in a general centrifugal pump. Moreover, at a narrow tip clearance, the pump head became partially higher in two-phase flow than that in single-phase flow. However, the internal pressure fluctuations on this pump due to air entrainment have not been studied yet. For that reason, we have examined the influences of void fraction, flow coefficient and impeller tip clearance on pressure fluctuations in the casing. The void fraction became larger, the influence of tip clearance on pressure distribution became less.

  • PDF

Air-Water Two-Phase Flow Test Facility of a Single Stage Closed-type Centrifugal Pump (단단 밀폐형 원심펌프의 기액이상류 성능시험 설비)

  • Kim, S. Y.;Lee, S. L.;Kim, Y. T.;Kim, S. D.;Lee, Y. S.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.49-53
    • /
    • 2004
  • LabVIEW is mostly preferred to use in experiment, measurement and control as one of the useful thing in America and Europe. So, We tried performance experiment of a single-stage closed-type centrifugal pump by using the LabVIEW. The pump rpm and the shaft torque are measured by rpm sensor and torque sensor The test pump's maximum rpm, head, kW are 1,750, 13m, and 1.5kW, respectively The casing is made up with transparency acrylic for confirmation the flow patterns. We installed experimental equipment for air water two phase flow. This paper tries to analyze the single-phase flow characteristics through this air water two phase flow experimental apparatus. The performance results of a single-stage closed-type centrifugal pump satisfied reappearance and coincide well with head and coefficients according to the change of rpm.

  • PDF

A Study of the Performance Improvement of a Centrifugal Separator for Gas-Liquid Two-Phase Flow (기액이상류 원심분리기의 성능개선에 관한 연구)

  • Kim, Jin-Man;Lee, Jun-Hee;Yoon, Yong-Kwan;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3215-3220
    • /
    • 2007
  • Gas-liquid separator has been designed for the sake of reducing expenses associated with production operations. To date, a number of gas-liquid separators have been installed and put to use for various applications. Despite the advantages of simple and compact configuration of separator with no moving part, its efficient operation is limited in terms of total pressure losses, separation performance and flow-induced noise and vibration, which are closely associated with the very complicated flow phenomena involved. In the present study, a gas-liquid centrifugal separator with a swirl vane is investigated for the purpose of water separation from compressed moisture air. The 3D Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Based upon the obtained solutions, tangential velocities, centrifugal forces, vortices and total pressure losses are analyzed to find out the best design parameters. From the present study, several attempts are made to improve the performance of conventional separators of centrifugal type.

  • PDF