• Title/Summary/Keyword: 기술코드

Search Result 2,221, Processing Time 0.027 seconds

A study on the application of redundancy in information design (정보디자인의 잉여성적용 연구)

  • Oh, Byung-Keun;Hong, Suk-Il
    • Archives of design research
    • /
    • v.18 no.1 s.59
    • /
    • pp.49-58
    • /
    • 2005
  • Focusing on the information sender, message, channel, and receiver, the existing information theory deals with the noise, information contents, and probability of choice, which involve in the process of information transmission. In the current digital environment, besides simply conveying information itself through media, the important issue is how to efficiently convey information. Therefore, we need to analyze the theory in different perspective, and to research the Information redundancy for the methodology of information design. The redundancy causes the receiver to have attraction to the information and to reduce its contents due to its supplement and repetition. So it can play a role of efficient communication method. The concept of redundancy is applied to the communication of art such as literature, architecture, painting, and design to accomplish efficient communication. In order to get persuasive information design for the receiver's perspective we need to make use of this concept. The redundancy can be applied with the technical aspect of multimedia and Interaction, which add supplemental expression, or sort of event for the receiver's experience and memory. In the process of constructing information it can be applied with the structure of gaming redundancy, entropy, the accumulating communication code using entertaining feature, and storytelling methodology. The noise and entropy could be used for the means of making redundancy, not the obstacle to information. The redundancy gives the receiver attraction on the information and makes them have strong will of interpreting it so that the purpose of conveying information will be accomplished efficiently.

  • PDF

Identifying Risk Management Locations for Synthetic Natural Gas Plant Using Pipe Stress Analysis and Finite Element Analysis (배관응력해석 및 유한요소해석에 의한 SNG플랜트의 리스크 관리 위치 선정)

  • Erten, Deniz Taygun;Yu, Jong Min;Yoon, Kee Bong;Kim, Ji Yoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • While they are becoming more viable, synthetic natural gas (SNG) plants, with their high temperatures and pressures, are still heavily dependent on advancements in the state-of-the-art technologies. However, most of the current work in the literature is focused on optimizing chemical processes and process variables, with little work being done on relevant mechanical damage and maintenance engineering. In this study, a combination of pipe system stress analysis and detailed local stress analysis was implemented to prioritize the inspection locations for main pipes of SNG plant in accordance to ASME B31.3. A pipe system stress analysis was conducted for pre-selecting critical locations by considering design condition and actual operating conditions such as heat-up and cool-down. Identified critical locations were further analyzed using a finite element method to locate specific high-stress points. Resultant stress values met ASME B31.3 code standards for the gasification reactor and lower transition piece (bend Y in Fig.1); however, it is recommended that the vertical displacement of bend Y be restricted more. The results presented here provide valuable information for future risk based maintenance inspection and further safe operation considerations.

THE IMPROVEMENT OF THE RELATIVE POSITIONING PRECISION FOR GPS L1 SINGLE FREQUENCY RECEIVER USING THE WEIGHTED SMOOTHING TECHNIQUES (가중 평활화 기법을 이용한 GPS L1 단일 주파수 수신기의 상대 측위 정밀도 향상)

  • Choi, Byung-Kyu;Park, Jong-Uk;Joh, Jeong-Ho;Lim, Hyung-Chul;Park, Phi-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.371-382
    • /
    • 2004
  • To improve the precision of relative positioning for GPS single frequency(L1) receiver, we accomplished the GPS data processing using the weighted smoothing techniques. The weighted phase smoothing technique is used to minimize the measurement error of pseudorange and position domain smoothing technique is adopted to make the complement of cycle-slip affection. we also considered some component errors like as ionospheric error, which are related with baseline length, and processed for several baselines (5, 10, 30, 40, and 150 km) to check the coverage area of this algorithm. This paper shows that weighted phase smoothing technique give more stable results after using this technique and the position domain smoothing technique can reduce the errors which are sensitive to the observational environment. Based on the results, we could find out that this algorithm is available for post-time and real-time applications and these techniques can be substitution methods which is able to get the high accuracy and precision without resolving the Integer ambiguity.

Production and Application of Domestic Input Data for Safety Assessment of Disposal (처분안전성평가를 위한 국내고유 입력자료의 확보와 적용)

  • Park, Chung-Kyun;Lee, Jae-Kwang;Baik, Min-Hoon;Lee, Youn-Myoung;Ko, Nak-Youl;Jeong, Jong-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • To provide domestic values of input parameters in a safety assessment of radioactive waste disposal under domestic deep underground environments, various kinds of experiments have been carried out under KURT (KAERI Underground Research Tunnel) conditions. The input parameters were classified, and some of them were selected for this study by the criteria of importance. The domestic experimental data under KURT environments were given top priority in the data review process. Foreign data under similar conditions to KURT were also gathered. The collected data were arranged and the statistical calculations were processed. The properties and distribution of the data were explained and compared to foreign values in view of their validity. The following parameters were analysed: failure time and early time failure rate of a container, solubility of nuclides, porosity and density of the buffer, and distribution coefficients of nuclides in the geomedia, hydraulic conductivity, diffusion depth of nuclides, groundwater flow rate, fracture aperture, length of internal fracture, and width of faulted rock mass in the host rock.

Human Gesture Recognition Technology Based on User Experience for Multimedia Contents Control (멀티미디어 콘텐츠 제어를 위한 사용자 경험 기반 동작 인식 기술)

  • Kim, Yun-Sik;Park, Sang-Yun;Ok, Soo-Yol;Lee, Suk-Hwan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1196-1204
    • /
    • 2012
  • In this paper, a series of algorithms are proposed for controlling different kinds of multimedia contents and realizing interact between human and computer by using single input device. Human gesture recognition based on NUI is presented firstly in my paper. Since the image information we get it from camera is not sensitive for further processing, we transform it to YCbCr color space, and then morphological processing algorithm is used to delete unuseful noise. Boundary Energy and depth information is extracted for hand detection. After we receive the image of hand detection, PCA algorithm is used to recognize hand posture, difference image and moment method are used to detect hand centroid and extract trajectory of hand movement. 8 direction codes are defined for quantifying gesture trajectory, so the symbol value will be affirmed. Furthermore, HMM algorithm is used for hand gesture recognition based on the symbol value. According to series of methods we presented, we can control multimedia contents by using human gesture recognition. Through large numbers of experiments, the algorithms we presented have satisfying performance, hand detection rate is up to 94.25%, gesture recognition rate exceed 92.6%, hand posture recognition rate can achieve 85.86%, and face detection rate is up to 89.58%. According to these experiment results, we can control many kinds of multimedia contents on computer effectively, such as video player, MP3, e-book and so on.

Contactless Fingerprint Recognition Based on LDP (LDP 기반 비접촉식 지문 인식)

  • Kang, Byung-Jun;Park, Kang-Ryoung;Yoo, Jang-Hee;Moon, Ki-Young;Kim, Jeong-Nyeo;Shin, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1337-1347
    • /
    • 2010
  • Fingerprint recognition is a biometric technology to identify individual by using fingerprint features such ridges and valleys. Most fingerprint systems perform the recognition based on minutiae points after acquiring a fingerprint image from contact type sensor. They have an advantage of acquiring a clear image of uniform size by touching finger on the sensor. However, they have the problems of the image quality can be reduced in case of severely dry or wet finger due to the variations of touching pressure and latent fingerprint on the sensor. To solve these problems, the contactless capturing devices for a fingerprint image was introduced in previous works. However, the accuracy of detecting minutiae points and recognition performance are reduced due to the degradation of image quality by the illumination variation. So, this paper proposes a new LDP-based fingerprint recognition method. It can effectively extract fingerprint patterns of iterative ridges and valleys. After producing histograms of the binary codes which are extracted by the LDP method, chi square distance between the enrolled and input feature histograms is calculated. The calculated chi square distance is used as the score of fingerprint recognition. As the experimental results, the EER of the proposed approach is reduced by 0.521% in comparison with that of the previous LBP-based fingerprint recognition approach.

Mobile Iris Recognition System Based on the Near Infrared Light Illuminator of Long Wavelength and Band Pass Filter and Performance Evaluations (장파장 근적외선 조명 및 밴드 패스 필터 기반 이동형 홍채 인식 시스템 및 성능 평가)

  • Cho, So-Ra;Nam, Gi-Pyo;Jeong, Dae-Sik;Shin, Kwang-Yong;Park, Kang-Ryoung;Shin, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.9
    • /
    • pp.1125-1137
    • /
    • 2011
  • Recently, there have been previous research about the iris recognition in mobile device to increase portability, whose accuracy is affected by the quality of iris image. Iris image is affected by illumination environment during the image acquisition. The existing system has high accuracy in indoor environment. However the accuracy is degraded in outdoor environment, because the gray levels of iris patterns in image are changed, and ghost and eyelash shading regions are produced by the sunlight of various wavelengths into iris region. To overcome these problems, we propose new mobile iris camera system which uses the near-infrared (NIR) light illuminator of 850 nm and band pass filter (BPF) of 850 nm. To measure the performance of the proposed system, we compared it to the existing one with the iris images captured in indoor and outdoor sunlight environments in terms of the equal error rates (EER) based on false acceptance rate (FAR) and false rejection rate (FRR). The experimental result showed that the proposed system had the lower EERs than those of previous system by 0.96% (with frontal light in indoors), 4.94% (with frontal light in outdoor), 9.24% (with side light in outdoor), and 7% (with back light in outdoor), respectively.

Advanced Architecture using DIAM for Improved Performance of Embedded Processor (임베디드 프로세서의 성능 향상을 위한 DIAM의 진보한 아키텍처)

  • Youn, Jong-Hee;Shin, Se-Chul;Baek, You-Heung;Cho, Jeong-hun
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.443-452
    • /
    • 2009
  • Although 32-bit architectures are becoming the norm for modern microprocessors, 16-bit ones are still employed by many low-end processors, for which small size and low power consumption are of high priority. However, 16-bit architectures have a critical disadvantage for embedded processors that they do not provide enough encoding space to add special instructions coined for certain applications. To overcome this, many existing architectures adopt non-orthogonal, irregular instruction sets to accommodate a variety of unusual addressing modes. In general, these non-orthogonal architectures are regarded compiler-unfriendly as they tend to requires extremely sophisticated compiler techniques for optimal code generation. To address this issue, we proposed a compiler-friendly processor with a new addressing mode, called the dynamic implied addressing mode(DIAM). In this paper, we will demonstrate that the DIAM provides more encoding space for our 16-bit processor so that we are able to support more instructions specially customized for our applications. And we will explain the advanced architecture which has improved performance. In our experiment, the proposed architecture shows 11.6% performance increase on average, as compared to the basic architecture.

An Analysis of Middle School Students' Perceptions and Learning Satisfaction in SMART Learning-based Science Instruction (스마트러닝 기반 과학수업에 대한 중학생들의 인식과 학습만족도 분석)

  • Park, Su-Kyeong
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.727-737
    • /
    • 2013
  • The purpose of this study was to investigate the middle school students' perception and their learning satisfaction in SMART learning based science instruction. Three types of modules on the solar system and lunar phases unit at the middle school level were developed and lessons on each module were taught to 207 student participants. All participants were provided with tabletPC(iPad2) with iOS5 installed, and using astronomy app Solar Walk, mirroring function, QR code, and Google Presentation, the lessons were carried out both in classroom and at home. The instrument for assessing students' perception on the SMART learning-based instruction was developed based on 4 factors including Self-directed, Motivation, Adaptiveness, and Technology Embedded, with a Likert scale from 1-5 on 20 items. The learning satisfaction survey instrument was originally from Keller's work (1987), and its test items were adapted and modified. To reveal the perception and learning satisfaction about SMART learning-based science lessons, the participants were comparatively analyzed by gender and science achievement levels. Results indicated that male students showed positive perception for the SMART learning-based instruction. Group with higher science achievement scores showed more positive perception of the SMART learning-based instruction in terms of Self-directed and Motivation factor. Also, the learning satisfaction of male students was higher than female students and group with higher academic ability more satisfied with the SMART learning-based instruction than the low group. The results provide implications for future development of programs and help set a direction of increasing the use of a SMART learning-based science in school.

Connection between Fourier of Signal Processing and Shannon of 5G SmartPhone (5G 스마트폰의 샤논과 신호처리의 푸리에의 표본화에서 만남)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.69-78
    • /
    • 2017
  • Shannon of the 5G smartphone and Fourier of the signal processing meet in the sampling theorem (2 times the highest frequency 1). In this paper, the initial Shannon Theorem finds the Shannon capacity at the point-to-point, but the 5G shows on the Relay channel that the technology has evolved into Multi Point MIMO. Fourier transforms are signal processing with fixed parameters. We analyzed the performance by proposing a 2N-1 multivariate Fourier-Jacket transform in the multimedia age. In this study, the authors tackle this signal processing complexity issue by proposing a Jacket-based fast method for reducing the precoding/decoding complexity in terms of time computation. Jacket transforms have shown to find applications in signal processing and coding theory. Jacket transforms are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^{\dot{+}}=nl_n$, where $A^{\dot{+}}$ is the transpose matrix of the element-wise inverse of A, that is, $A^{\dot{+}}=(a^{-1}_{kj})$, which generalise Hadamard transforms and centre weighted Hadamard transforms. In particular, exploiting the Jacket transform properties, the authors propose a new eigenvalue decomposition (EVD) method with application in precoding and decoding of distributive multi-input multi-output channels in relay-based DF cooperative wireless networks in which the transmission is based on using single-symbol decodable space-time block codes. The authors show that the proposed Jacket-based method of EVD has significant reduction in its computational time as compared to the conventional-based EVD method. Performance in terms of computational time reduction is evaluated quantitatively through mathematical analysis and numerical results.