• Title/Summary/Keyword: 기상흡착

Search Result 66, Processing Time 0.03 seconds

Absorption Capacity of Heavy Metals and Harmful Elements of Waste Leachate Using by Fast Growing Trees (속성수를 이용한 쓰레기 매립지 침출수의 중금속 및 유해성분의 흡수, 제거 가능성)

  • 이동섭;우수영;김동근;김판기;권오규;배관호;이은주
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • Populus euramericana and Betula platyphylla var. japonica have been identified as possible species for use for phytoremediation of landfills. To identify the capacity of waste leachate absorption in Populus euramericana and Betula platyphylla var, japonica, four different treatments were applied to these seedlings: leachate solution (100% leachate), 50% dilution (50% leachate: 50% water, v/v) and 25% dilution (25% leachate: 75% water, v/v) were applied to these two species. After the experiment, concentrations of heavy metals in tree biomass were analyzed by Inductively Coupled Plasma emission spectrometer (ICP). These two species can take up the hazardous parts of the leachate such as heavy metals. Especially, these species showed good absorption capacity of Al, Cr, and Fe elements. The result of this study suggested that these two species can take up the toxic materials through their roots and transport them to stems or leaves.

  • PDF

A Study on Contact Resistance Properties of Metal/CVD Graphene (화학기상증착법을 이용하여 합성한 그래핀과 금속의 접촉저항 특성 연구)

  • Dong Yeong Kim;Haneul Jeong;Sang Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.60-64
    • /
    • 2023
  • In this study, the electrical contact resistance characteristics between graphene and metals, which is one of important factors for the performance of graphene-based devices, were compared. High-quality graphene was synthesized by chemical vapor deposition (CVD) method, and Al, Cu, Ni, and Ti as electrode materials were deposited on the graphene surface with equal thickness of 50 nm. The contact resistances of graphene transferred to SiO2/Si substrates and metals were measured by the transfer length method (TLM), and the average contact resistances of Al, Cu, Ni, and Ti were found to be 345 Ω, 553 Ω, 110 Ω, and 174 Ω, respectively. It was found that Ni and Ti, which form chemical bonds with graphene, have relatively lower contact resistances compared to Al and Cu, which have physical adsorption properties. The results of this study on the electrical properties between graphene and metals are expected to contribute to the realization of high-performance graphene-based devices including electronics, optoelectronic devices, and sensors by forming low contact resistance with electrodes.

The Carrier Gas Effects on Selectivity and the Enhancement of Selectivity by Surface Passivation in Chemical Vapor Deposition of Copper Films (구리 박막의 선택적 화학기상 증착에 대한 운반 기체의 영향과 기판 표면 처리에 의한 선택성 증진 효과)

  • Kim, Seok;Park, Jong-Man;Choi, Doo-Jin
    • Korean Journal of Materials Research
    • /
    • v.7 no.9
    • /
    • pp.811-823
    • /
    • 1997
  • 차세대 반도체 배선분야에서, Cu박막은 현재의 AI을 대체할 물질로서 대두되고 있으며 CVD에 의한 선택적 증착은 Cu의 patterning과 관련하여 상당한 관심을 일으키고 있다. 본 연구에서는 (hfac)Cu(VTMS)의 유기원료를 사용하여, CVD공정변수, 운반기체, 표면 처리 공정에 따른 SiO$_{2}$, TiN, AI기판에 대한 선택성을조사하였다. 선택성은 저온(15$0^{\circ}C$), 저합(0.3Torr)에서 향상될 수 있었으며, 특히, HMDS in-situ-predosing공정에 의해 더욱 향상될 수 있었다. 모든 경우에 대해, H$_{2}$운반기체가 Ar 보다 짧은 incubation time과 높은 증착 속도가 얻어졌으며, Cu입자들의 크기가 작고 연결상태가 보다 양호하였다. 이는 H$_{2}$경우에 기판표면에 원료가 흡착되어 핵을 형성시키는 위치 (-OH)가 보다 많이 제공되기 때문으로 여겨진다. 이러한 미세구조의 차이는 H$_{2}$경우에 보다 낮은 비저항을 얻게 했다. HMDS in-situ predosing공정에 의한 Cu박막내 불순물 차이는 없었으며 뚜렷한 비저항의 차이도 나타나지 않았다.

  • PDF

다공성 나노 Pd 박막의 수소 검출 특성

  • No, Hui-Jun;Park, Jin-Seong;Kim, Hyeon-Jong;Kim, An-Na;Han, Min-A;Lee, Ho-Nyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.84.1-84.1
    • /
    • 2018
  • 현재 사용되고 있는 화석 연료는 고갈되고 있으며 지구온난화와 같은 환경오염을 일으키는 주원인으로 이를 대체하는 에너지원으로서 수소가 주목받고 있다. 그러나 수소는 상온 및 대기압에서 4 %의 낮은 LEL (lower explosive limit)을 가지므로 높은 인화성과 폭발성을 가진다. 또한 무색, 무취한 성질을 가지고 있어 사람에 의해 검출되지 않는다. 그러므로 상온에서의 수소 농도를 정량화하고 검출하기 위한 방법이 필요하다. 수소를 검출하기 위한 수소센서에는 저항, 촉매, 광학, 일함수 등을 이용한 센서들이 있으며 그 중 저항을 이용한 귀금속 기반 수소센서가 널리 알려져 있다. 팔라듐(Pd), 백금 (Pt)와 같은 귀금속 기반 수소센서는 높은 수소 용해도 및 확산으로 인해 수소에 우수한 선택성을 가진다. 특히 Pd는 흡착에 대한 친화성이 매우 우수하다. 팔라듐에 수소가 노출되면, 수소가 Pd 격자로 확산되어 Pd-hydride를 형성시켜 부피가 팽창되고 저항이 변한다. 이러한 특성을 바탕으로 팔라듐의 저항 변화를 기반으로 한 수소센서의 개발이 진행되고 있다. 본 연구에서는 물리기상증착 (PVD)을 이용하여 다양한 다공성 나노 Pd 박막을 가지는 수소센서를 제작하였으며, 수소 농도에 따른 실온에서의 수소 검출 특성을 관찰하였다. 제작된 다공성 나노 Pd 박막의 특성은 SEM, TEM 및 XRD를 통하여 확인하였다. 다공성 나노 Pd 박막이 수소에 노출 되었을 때 전자 산란 및 접촉 면적의 증가에 따른 저항의 변화를 확인하였다.

  • PDF

A Reliable Field Emission Performance of Double-Walled Carbon Nanotube Field Emitters (이중층 탄소나노튜브 전계전자 방출원의 신뢰성 있는 전계방출 특성)

  • Jung, S.I.;Lee, S.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.566-575
    • /
    • 2008
  • We investigated the field emission characteristics from the planar field emitters made of double-walled carbon nanotubes (DWCNTs) synthesized by a catalytic chemical vapor deposition (CCVD) method. Transmission electron microscopy, Thermogravimetric and Raman analysis showed that the carbon materials have a low defect level in their atomic carbon structure, pointing to the synthesis of high-purity DWCNTs. For field emission properties of DWCNTs, the turn-on field of DWCNTs was $1.9\;V/{\mu}m$ and the current density was about $74\;mA/cm^2$ at $8.1\;V/{\mu}m$, which is sufficient for the applications of field emission displays and vacuum microelectronic devices. The DWCNT field emitters also exhibited a uniform field emission pattern and good field emission stability in a diode configuration.

The Performance of Photocatalyst filter for an Air Cleaner-Effect of novel metal (공기정화기용 광촉매 필터의 성능-귀금속 담지 영향)

  • Jang, Hyun-Tae;Kim, Jeong-Keun;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1284-1291
    • /
    • 2006
  • This work examined improving the activity of photocatalyts by novel metal doping for the degradation of volatile organic compounds, such as formaldehyde and acetone. The activity was determined with type of dopant novel metal and volatile organic compounds. The palladium-doped $TiO_2$ was found to be improved the decomposition of acetone. The photocatalytic degradation rate for acetone was increased with decreasing temperature to $45^{\circ}C$. The optmum temperature of photocatalytic degradation rate for formaldehyde was $75^{\circ}C$. The enhancement of reaction rate with novel metal were 1.0 wt.% of palladium for acetone, 1.0 wt.% of plaitnum for formaldehyde.

  • PDF

Current-Voltage and Conductance Characteristics of Silicon-based Quantum Electron Device (실리콘 양자전자소자의 전류-전압 및 컨덕턴스 특성)

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.811-816
    • /
    • 2019
  • The silicon-adsorbed oxygen(Si-O) superlattice grown by ultra high vacuum-chemical vapor deposition(UHV-CVD) was introduced as an epitaxial barrier for silicon quantum electron devices. The current-voltage (I-V) measurement results show the stable and good insulating behavior with high breakdown voltage. It is apparent that the Si-O superlattice can serve as an epitaxially grown insulating layer as possible replacement of silicon-on-insulator(SOI). This thick barrier may be useful as an epitaxial insulating gate for field effect transistors(FETs). The rationale is that it should be possible to fabricate a FET on top of another FET, moving one step closer to the ultimate goal of future silicon-based three-dimensional integrated circuit(3DIC).

A Study on the Annealing Effect of SnO Nanostructures with High Surface Area (높은 표면적을 갖는 SnO 나노구조물의 열처리 효과에 관한 연구)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.536-542
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is a well-known n-type semiconductor that shows change in resistance in the presence of gas molecules, such as $H_2$, CO, and $CO_2$. Considerable research has been done on $SnO_2$ semiconductors for gas sensor applications due to their noble property. The nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in the sensing of gas molecules. In this study, SnO nanoplatelets were grown densely on Si substrates using a thermal CVD process. The SnO nanostructures grown by the vapor transport method were post annealed to a $SnO_2$ phase by thermal CVD in an oxygen atmosphere at $830^{\circ}C$ and $1030^{\circ}C$. The pressure of the furnace chamber was maintained at 4.2 Torr. The crystallographic properties of the post-annealed SnO nanostructures were investigated by Raman spectroscopy and XRD. The change in morphology was confirmed by scanning electron microscopy. As a result, the SnO nanostructures were transformed to a $SnO_2$ phase by a post-annealing process.

Simulation and Measurement of Degradation and Movement of Insecticide Ethoprophos in Soil (토양(土壤)중 살충제(殺蟲劑) ethoprophos의 분해성(分解性) 및 이동성(移動性)의 측정(測定)과 예측(豫測)에 관한 모델 연구(硏究))

  • Moon, Young-Hee;Kim, Yun-Tae;Kim, Young-Seok;Han, Soo-Kon
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.209-218
    • /
    • 1993
  • The behaviour of insectcide ethoprophos (O-ethyl S,S-propyl phosphorodithioate) in soil was investigated. In a laboratory study, the degradation of ethoprophos in soil followed first-order reaction kinetics. The half-life of the insecticide in the soil incubated with 10, 18 and $25^{\circ}C$ was 12.4, 5.5 and 2.5 days, respectively. Arrhenius activation energy was 73.8 KJ/mole. The half-life was 46.4, 17.6 and 6.9 day in the soil with 7, 14 and 19% of soil water content, respectively. The moisture dependence B value in empirical equation was 1.67. The adsorption isotherm for ethoprophos in the soil agreed with freundlich equation. The adsorption distribution coefficient (Kd) was 0.27. In a field study prepared in autumn with undisturbed soil column in a mini-lysimeter system, ethoprophos residues were largely distributed in the top $0{\sim}2cm$ soil layer and moved down to the top 6cm soil layer. Persistence of ethoprophos in field soil was correlated with variation in weather pattern during the period of experiments. The half-life of ethoprophos treated at March and October was about 17 and 5 days, respectively. The ethoprophos woil was degraded up to 90% at 37day after the both treatment. In persistence and mobility of ethoprophos in field soil, the observed data were reasonably corresponded with predicted data by some computer model of pesticide behaviour.

  • PDF

Effect of Substrate Temperature and Growth Duration on Palladium Oxide Nanostructures (팔라듐 옥사이드 나노구조물의 성장에서 기판 온도와 성장 시간의 효과)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.458-463
    • /
    • 2019
  • Palladium (Pd) is widely used as a catalyst and noxious gas sensing materials. Especially, various researches of Pd based hydrogen gas sensor have been studied due to the noble property, Pd can be adsorbed hydrogen up to 900 times its own volume. In this study, palladium oxide (PdO) nanostructures were grown on Si substrate ($SiO_2(300nm)/Si$) for 3 to 5 hours at $230^{\circ}C{\sim}440^{\circ}C$ using thermal chemical vapor deposition system. Pd powder (source material) was vaporized at $950^{\circ}C$ and high purity Ar gas (carrier gas) was flown with the 200 sccm. The surface morphology of as-grown PdO nanostructures were characterized by field-emission scanning electron microscopy(FE-SEM). The crystallographic properties were confirmed by Raman spectroscopy. As the results, the as-grown nanostructures exhibit PdO phase. The nano-cube structures of PdO were synthesized at specific substrate temperatures and specific growth duration. Especially, PdO nano-cube structrures were uniformly grown at $370^{\circ}C$ for growth duration of 5 hours. The PdO nano-cube structures are attributed to vapor-liquid-solid process. The nano-cube structures of PdO on graphene nanosheet can be applied to fabricate of high sensitivity hydrogen gas sensor.