• Title/Summary/Keyword: 기상정보시스템

Search Result 948, Processing Time 0.026 seconds

The Estimation of IDF Curve Considering Climate Change (기후변화를 고려한 IDF곡선 추정방안에 대한 연구)

  • Kim, Byung-Sik;Kyoung, Min-Soo;Lee, Keon-Haeng;Kim, Hyung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.774-779
    • /
    • 2007
  • IDF 곡선은 전통적으로 지점에서의 과거 관측 강우량 시계열 자료를 수집하여 작성하여 왔으며, 이때 과거 강우량 자료는 정상성을 지니고 있고 미래를 대변한다는 가정을 전제로 한다. 그러나 이미 많은 연구자들에 의해 기후변화가 전구적으로 발생하고 있으며 우리나라에서도 더 이상 기후변화의 사실여부는 이제 더이상 논란 꺼리가 아니다. 특히, 기후변화의 영향을 직접적으로 받을 수밖에 없는 수자원 분야에서는 1990년대부터 잦은 홍수와 가뭄의 반복으로 곤란을 겪고 있다. 특히, 우리나라는 협소한 국토면적과 과다한 인구로 토지나 수자원 등 국토자원 이용의 강도가 다른 나라에 비하여 현저하게 높기 때문에 지구온난화에 따른 기후변화와 같은 약간의 기후변동으로도 심각한 문제가 발생할 가능성이 내포되어 있다. 특히, 기후변화는 유역 규모의 강우 발생 패턴과 강우량의 증가 및 감소에 영향을 미치게 되며 이로 인해 강우 시계열 자료는 비정상성과 경향성을 지니게 된다. 그러나 지금까지는 IDF 곡선의 작성시 강우의 경향성을 무시해 왔다. 본 연구에서는 기후변화가 IDF 곡선에 미치는 영향을 분석하기 위하여 GCM 기후변화 시나리오를 이용하여 IDF 곡선을 작성하였다. 이를 위하여 먼저, YONU CGCM의 제한실험과 점증실험을 실시하여 전구적 규모의 기후변화 시나리오를 작성하였으며, 통계학적 축소기법과 추계학적 일기발생기법을 이용하여 대상지점의 일 수문기상 시계열을 모의하였다. 그리고 BLRP(Bartlett Lewis Rectangular Pulse) 모형과 분해(koutsoyiannis, 2000) 기법을 이용하여 모의된 일 강우 자료를 시자료로 분해하였으며 이를 이용하여 IDF 곡선을 작성하였다. 그 결과, 기후변화 시 지속기간별 재현기간별 강우량이 현재에 크게 비해 증가됨을 확인할 수 있었다.으며 여러명이 동시에 서버에 접속을 하기 때문에 컴퓨터에 부하가 많이 걸리는 모델링이나 복잡한 분석은 실시하기 어려우며, 대용량 데이터를 전송할 수 있는 대역폭이 확보 되어야 한다. 또한, Internet 환경으로 개발을 해야되기 때문에 데스크탑용 GIS에 비해 개발속도가 느리며 개발 초기비용이 많이 들게 된다. 하지만, 네트워크 기술의 발달과 모바일과의 연계 등으로 이러한 약점을 극복할 수 있을 것으로 판단된다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 홍수재해 정보를 검색, 처리, 분석, 예경보할 수 있는 홍수방재정보 시스템을 구축토록 하였다.비해 초음파 감시하 치골상부 방광천자가 정확하고 안전한 채뇨법으로 권장되어야 한다고 생각한다.應裝置) 및 운용(運用)에 별다른 어려움이 없고, 내열성(耐熱性)이 강(强)하므로 쉬운 조건하(條件下)에서 경제적(經濟的)으로 공업적(工業的) 이용(利用)에 유리(有利)하다고 판단(判斷)되어진다.reatinine은 함량이 적었다. 관능검사결과(官能檢査結果) 자가소화(自家消化)시킨 크릴간장은 효소(酵素)처리한 것이나 재래식 콩간장에 비하여 품질 면에서 손색이 없고 저장성(貯藏性)이 좋은 크릴간장을 제조(製造)할 수 있다는 결론을 얻었다.이 있음을 확인할 수 있었다.에 착안하여 침전시 슬러지층과 상등액의 온도차를 측정하여 대사열량의 발생량을 측정하고 슬러지의 활성을 측정할 수 있는 방법을 개발하였다.enin과 Rhaponticin의 작용(作用)에 의(依)한 것이며, 이는 한의학(韓醫學) 방제(方劑) 원리(原理)인 군신좌사(君臣佐使) 이론(理論)에서 군약(君藥)이 주증(主症)에 주(主)로 작용(作用)하는 약물(藥物)이라는 것을 밝혀주는 것이라고 사료(思料)된다.일전 $13.447\;{\mu}g/hr/g$, 섭취 7일중 $8.123

  • PDF

Application Analysis of GIS Based Distributed Model Using Radar Rainfall (레이더강우를 이용한 GIS기반의 분포형모형 적용성 분석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • According to recent frequent local flash flood due to climate change, the very short-term rainfall forecast using remotely sensed rainfall like radar is necessary to establish. This research is to evaluate the feasibility of GIS-based distributed model coupled with radar rainfall, which can express temporal and spatial distribution, for multipurpose dam operation during flood season. $Vflo^{TM}$ model was used as physically based distributed hydrologic model. The study area was Yongdam dam basin ($930\;km^2$) and the 3 storm events of local convective rainfall in August 2005, and the typhoon.Ewiniar.and.Bilis.collected from Jindo radar was adopted for runoff simulation. Distributed rainfall consistent with hydrologic model grid resolution was generated by using K-RainVieux, pre-processor program for radar rainfall. The local bias correction for original radar rainfall shows reasonable results of which the percent error from the gauge observation is less than 2% and the bias value is $0.886{\sim}0.908$. The parameters for the $Vflo^{TM}$ were estimated from basic GIS data such as DEM, land cover and soil map. As a result of the 3 events of multiple peak hydrographs, the bias of total accumulated runoff and peak flow is less than 20%, which can provide a reasonable base for building operational real-time short-term rainfall-runoff forecast system.

  • PDF

An Relational Analysis between Humidity, Temperature and Fire Occurrence using Public Data (공공데이터를 이용한 습도 및 온도와 실화 발생 간의 관계분석)

  • Song, Dong-Woo;Kim, Ki-Sung;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.82-90
    • /
    • 2014
  • According to recent government's 3.0 operating paradigm for the opening and sharing of public information, relationship between humidity, temperature and fire occurrence were analyzed using the data in National Weather Service and National Emergency Management Agency. In order to analyze the relationships between humidity, temperature and fire occurrence, hourly frequency of fire occurrence compared with humidity and temperature ranges was suggested as an analysis method. Tendencies of fire occurrence frequencies were examined through this and characteristics of detailed attributes could be statistically identified. Results about hourly frequencies of fire occurrence by classifying the humidity ranges in each region showed increasing frequencies in all areas where the humidity is lower. Hourly frequencies of fire occurrence according to temperature ranges were identified to be similar in each area as well. In addition, characteristics of objects' attributes were analyzed including types of fire, igniting source of fire, initial complex, reasons of fire occurrence, and distinctive directions were suggested. Suggested method in this paper could be practically used when suggesting the frequency in each category in fire occurrence statistics of National Fire Information System.

Real-time and Parallel Semantic Translation Technique for Large-Scale Streaming Sensor Data in an IoT Environment (사물인터넷 환경에서 대용량 스트리밍 센서데이터의 실시간·병렬 시맨틱 변환 기법)

  • Kwon, SoonHyun;Park, Dongwan;Bang, Hyochan;Park, Youngtack
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.54-67
    • /
    • 2015
  • Nowadays, studies on the fusion of Semantic Web technologies are being carried out to promote the interoperability and value of sensor data in an IoT environment. To accomplish this, the semantic translation of sensor data is essential for convergence with service domain knowledge. The existing semantic translation technique, however, involves translating from static metadata into semantic data(RDF), and cannot properly process real-time and large-scale features in an IoT environment. Therefore, in this paper, we propose a technique for translating large-scale streaming sensor data generated in an IoT environment into semantic data, using real-time and parallel processing. In this technique, we define rules for semantic translation and store them in the semantic repository. The sensor data is translated in real-time with parallel processing using these pre-defined rules and an ontology-based semantic model. To improve the performance, we use the Apache Storm, a real-time big data analysis framework for parallel processing. The proposed technique was subjected to performance testing with the AWS observation data of the Meteorological Administration, which are large-scale streaming sensor data for demonstration purposes.

Prediction of Traffic Congestion in Seoul by Deep Neural Network (심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측)

  • Kim, Dong Hyun;Hwang, Kee Yeon;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.44-57
    • /
    • 2019
  • Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

Development of Korean Peninsula VS30 Map Based on Proxy Using Linear Regression Analysis (일반선형회귀분석을 이용한 프락시 기반 한반도 VS30지도 개발)

  • Choi, Inhyeok;Yoo, Byeongho;Kwak, Dongyoup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • The VS30 map is used as a key variable for site amplification in the ShakeMap, which predicts ground motion at any site. However, no VS30 map considering Korean geology and geomorphology has been developed yet. To develop a proxy-based VS30 map, we used 1,101 VS profiles obtained from a geophysical survey and collected proxy layers of geological and topographical information for the Korean Peninsula. Then, VS30 prediction models were developed using linear regression analysis for each geological age considering the distribution of VS30. As a result, models depending on geomorphology were suggested per each geologic group, including Quaternary, Fill, Ocean, Mesozoic group and Precambrian. Resolution of map is doubled from that of VS30 map by U.S. Geological Survey (USGS). Standard deviation of residual in natural log of proxy-based VS30 map is 0.233, whereas standard deviation of slope-based USGS VS30 map is 0.387. Therefore, the proxy-based VS30 map developed in this study is expected to have less uncertainty and to contribute to predicting more accurately the ground motion amplitude.

Development of Demand Forecasting Model for Public Bicycles in Seoul Using GRU (GRU 기법을 활용한 서울시 공공자전거 수요예측 모델 개발)

  • Lee, Seung-Woon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.1-25
    • /
    • 2022
  • After the first Covid-19 confirmed case occurred in Korea in January 2020, interest in personal transportation such as public bicycles not public transportation such as buses and subways, increased. The demand for 'Ddareungi', a public bicycle operated by the Seoul Metropolitan Government, has also increased. In this study, a demand prediction model of a GRU(Gated Recurrent Unit) was presented based on the rental history of public bicycles by time zone(2019~2021) in Seoul. The usefulness of the GRU method presented in this study was verified based on the rental history of Around Exit 1 of Yeouido, Yeongdengpo-gu, Seoul. In particular, it was compared and analyzed with multiple linear regression models and recurrent neural network models under the same conditions. In addition, when developing the model, in addition to weather factors, the Seoul living population was used as a variable and verified. MAE and RMSE were used as performance indicators for the model, and through this, the usefulness of the GRU model proposed in this study was presented. As a result of this study, the proposed GRU model showed higher prediction accuracy than the traditional multi-linear regression model and the LSTM model and Conv-LSTM model, which have recently been in the spotlight. Also the GRU model was faster than the LSTM model and the Conv-LSTM model. Through this study, it will be possible to help solve the problem of relocation in the future by predicting the demand for public bicycles in Seoul more quickly and accurately.

An Improvement Study on the Hydrological Quantitative Precipitation Forecast (HQPF) for Rainfall Impact Forecasting (호우 영향예보를 위한 수문학적 정량강우예측(HQPF) 개선 연구)

  • Yoon Hu Shin;Sung Min Kim;Yong Keun Jee;Young-Mi Lee;Byung-Sik Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.87-98
    • /
    • 2022
  • In recent years, frequent localized heavy rainfalls, which have a lot of rainfall in a short period of time, have been increasingly causing flooding damages. To prevent damage caused by localized heavy rainfalls, Hydrological Quantitative Precipitation Forecast (HQPF) was developed using the Local ENsemble prediction System (LENS) provided by the Korea Meteorological Administration (KMA) and Machine Learning and Probability Matching (PM) techniques using Digital forecast data. HQPF is produced as information on the impact of heavy rainfall to prepare for flooding damage caused by localized heavy rainfalls, but there is a tendency to overestimate the low rainfall intensity. In this study, we improved HQPF by expanding the period of machine learning data, analyzing ensemble techniques, and changing the process of Probability Matching (PM) techniques to improve predictive accuracy and over-predictive propensity of HQPF. In order to evaluate the predictive performance of the improved HQPF, we performed the predictive performance verification on heavy rainfall cases caused by the Changma front from August 27, 2021 to September 3, 2021. We found that the improved HQPF showed a significantly improved prediction accuracy for rainfall below 10 mm, as well as the over-prediction tendency, such as predicting the likelihood of occurrence and rainfall area similar to observation.

Stochastic Self-similarity Analysis and Visualization of Earthquakes on the Korean Peninsula (한반도에서 발생한 지진의 통계적 자기 유사성 분석 및 시각화)

  • JaeMin Hwang;Jiyoung Lim;Hae-Duck J. Jeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.493-504
    • /
    • 2023
  • The Republic of Korea is located far from the boundary of the earthquake plate, and the intra-plate earthquake occurring in these areas is generally small in size and less frequent than the interplate earthquake. Nevertheless, as a result of investigating and analyzing earthquakes that occurred on the Korean Peninsula between the past two years and 1904 and earthquakes that occurred after observing recent earthquakes on the Korean Peninsula, it was found that of a magnitude of 9. In this paper, the Korean Peninsula Historical Earthquake Record (2 years to 1904) published by the National Meteorological Research Institute is used to analyze the relationship between earthquakes on the Korean Peninsula and statistical self-similarity. In addition, the problem solved through this paper was the first to investigate the relationship between earthquake data occurring on the Korean Peninsula and statistical self-similarity. As a result of measuring the degree of self-similarity of earthquakes on the Korean Peninsula using three quantitative estimation methods, the self-similarity parameter H value (0.5 < H < 1) was found to be above 0.8 on average, indicating a high degree of self-similarity. And through graph visualization, it can be easily figured out in which region earthquakes occur most often, and it is expected that it can be used in the development of a prediction system that can predict damage in the event of an earthquake in the future and minimize damage to property and people, as well as in earthquake data analysis and modeling research. Based on the findings of this study, the self-similar process is expected to help understand the patterns and statistical characteristics of seismic activities, group and classify similar seismic events, and be used for prediction of seismic activities, seismic risk assessments, and seismic engineering.

An analysis methodology for the power generation of a solar power plant considering weather, location, and installation conditions (입지 및 설치방식에 따른 태양광 발전량 분석 방법에 관한 연구)

  • Byoung Noh Heo;Jae Hyun Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.91-98
    • /
    • 2023
  • The amount of power generation of a solar plant has a high correlation with weather conditions, geographical conditions, and the installation conditions of solar panels. Previous studies have found the elements which impacts the amount of power generation. Some of them found the optimal conditions for solar panels to generate the maximum amount of power. Considering the realistic constraints when installing a solar power plant, it is very difficult to satisfy the conditions for the maximum power generation. Therefore, it is necessary to know how sensitive the solar power generation amount is to factors affecting the power generation amount, so that plant owners can predict the amount of solar power generation when examining the installation of a solar power plant. In this study, we propose a polynomial regression analysis method to analyze the relationship between solar power plant's power generation and related factors such as weather, location, and installation conditions. Analysis data were collected from 10 solar power plants installed and operated in Daegu and Gyeongbuk. As a result of the analysis, it was found that the amount of power generation was affected by panel type, amount of insolation and shade. In addition, the power generation was affected by interaction of the installation angle and direction of the panel.