Kim, Byung-Sik;Kyoung, Min-Soo;Lee, Keon-Haeng;Kim, Hyung-Soo
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.774-779
/
2007
IDF 곡선은 전통적으로 지점에서의 과거 관측 강우량 시계열 자료를 수집하여 작성하여 왔으며, 이때 과거 강우량 자료는 정상성을 지니고 있고 미래를 대변한다는 가정을 전제로 한다. 그러나 이미 많은 연구자들에 의해 기후변화가 전구적으로 발생하고 있으며 우리나라에서도 더 이상 기후변화의 사실여부는 이제 더이상 논란 꺼리가 아니다. 특히, 기후변화의 영향을 직접적으로 받을 수밖에 없는 수자원 분야에서는 1990년대부터 잦은 홍수와 가뭄의 반복으로 곤란을 겪고 있다. 특히, 우리나라는 협소한 국토면적과 과다한 인구로 토지나 수자원 등 국토자원 이용의 강도가 다른 나라에 비하여 현저하게 높기 때문에 지구온난화에 따른 기후변화와 같은 약간의 기후변동으로도 심각한 문제가 발생할 가능성이 내포되어 있다. 특히, 기후변화는 유역 규모의 강우 발생 패턴과 강우량의 증가 및 감소에 영향을 미치게 되며 이로 인해 강우 시계열 자료는 비정상성과 경향성을 지니게 된다. 그러나 지금까지는 IDF 곡선의 작성시 강우의 경향성을 무시해 왔다. 본 연구에서는 기후변화가 IDF 곡선에 미치는 영향을 분석하기 위하여 GCM 기후변화 시나리오를 이용하여 IDF 곡선을 작성하였다. 이를 위하여 먼저, YONU CGCM의 제한실험과 점증실험을 실시하여 전구적 규모의 기후변화 시나리오를 작성하였으며, 통계학적 축소기법과 추계학적 일기발생기법을 이용하여 대상지점의 일 수문기상 시계열을 모의하였다. 그리고 BLRP(Bartlett Lewis Rectangular Pulse) 모형과 분해(koutsoyiannis, 2000) 기법을 이용하여 모의된 일 강우 자료를 시자료로 분해하였으며 이를 이용하여 IDF 곡선을 작성하였다. 그 결과, 기후변화 시 지속기간별 재현기간별 강우량이 현재에 크게 비해 증가됨을 확인할 수 있었다.으며 여러명이 동시에 서버에 접속을 하기 때문에 컴퓨터에 부하가 많이 걸리는 모델링이나 복잡한 분석은 실시하기 어려우며, 대용량 데이터를 전송할 수 있는 대역폭이 확보 되어야 한다. 또한, Internet 환경으로 개발을 해야되기 때문에 데스크탑용 GIS에 비해 개발속도가 느리며 개발 초기비용이 많이 들게 된다. 하지만, 네트워크 기술의 발달과 모바일과의 연계 등으로 이러한 약점을 극복할 수 있을 것으로 판단된다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 홍수재해 정보를 검색, 처리, 분석, 예경보할 수 있는 홍수방재정보 시스템을 구축토록 하였다.비해 초음파 감시하 치골상부 방광천자가 정확하고 안전한 채뇨법으로 권장되어야 한다고 생각한다.應裝置) 및 운용(運用)에 별다른 어려움이 없고, 내열성(耐熱性)이 강(强)하므로 쉬운 조건하(條件下)에서 경제적(經濟的)으로 공업적(工業的) 이용(利用)에 유리(有利)하다고 판단(判斷)되어진다.reatinine은 함량이 적었다. 관능검사결과(官能檢査結果) 자가소화(自家消化)시킨 크릴간장은 효소(酵素)처리한 것이나 재래식 콩간장에 비하여 품질 면에서 손색이 없고 저장성(貯藏性)이 좋은 크릴간장을 제조(製造)할 수 있다는 결론을 얻었다.이 있음을 확인할 수 있었다.에 착안하여 침전시 슬러지층과 상등액의 온도차를 측정하여 대사열량의 발생량을 측정하고 슬러지의 활성을 측정할 수 있는 방법을 개발하였다.enin과 Rhaponticin의 작용(作用)에 의(依)한 것이며, 이는 한의학(韓醫學) 방제(方劑) 원리(原理)인 군신좌사(君臣佐使) 이론(理論)에서 군약(君藥)이 주증(主症)에 주(主)로 작용(作用)하는 약물(藥物)이라는 것을 밝혀주는 것이라고 사료(思料)된다.일전 $13.447\;{\mu}g/hr/g$, 섭취 7일중 $8.123
Journal of Korean Society for Geospatial Information Science
/
v.16
no.1
/
pp.23-32
/
2008
According to recent frequent local flash flood due to climate change, the very short-term rainfall forecast using remotely sensed rainfall like radar is necessary to establish. This research is to evaluate the feasibility of GIS-based distributed model coupled with radar rainfall, which can express temporal and spatial distribution, for multipurpose dam operation during flood season. $Vflo^{TM}$ model was used as physically based distributed hydrologic model. The study area was Yongdam dam basin ($930\;km^2$) and the 3 storm events of local convective rainfall in August 2005, and the typhoon.Ewiniar.and.Bilis.collected from Jindo radar was adopted for runoff simulation. Distributed rainfall consistent with hydrologic model grid resolution was generated by using K-RainVieux, pre-processor program for radar rainfall. The local bias correction for original radar rainfall shows reasonable results of which the percent error from the gauge observation is less than 2% and the bias value is $0.886{\sim}0.908$. The parameters for the $Vflo^{TM}$ were estimated from basic GIS data such as DEM, land cover and soil map. As a result of the 3 events of multiple peak hydrographs, the bias of total accumulated runoff and peak flow is less than 20%, which can provide a reasonable base for building operational real-time short-term rainfall-runoff forecast system.
According to recent government's 3.0 operating paradigm for the opening and sharing of public information, relationship between humidity, temperature and fire occurrence were analyzed using the data in National Weather Service and National Emergency Management Agency. In order to analyze the relationships between humidity, temperature and fire occurrence, hourly frequency of fire occurrence compared with humidity and temperature ranges was suggested as an analysis method. Tendencies of fire occurrence frequencies were examined through this and characteristics of detailed attributes could be statistically identified. Results about hourly frequencies of fire occurrence by classifying the humidity ranges in each region showed increasing frequencies in all areas where the humidity is lower. Hourly frequencies of fire occurrence according to temperature ranges were identified to be similar in each area as well. In addition, characteristics of objects' attributes were analyzed including types of fire, igniting source of fire, initial complex, reasons of fire occurrence, and distinctive directions were suggested. Suggested method in this paper could be practically used when suggesting the frequency in each category in fire occurrence statistics of National Fire Information System.
Nowadays, studies on the fusion of Semantic Web technologies are being carried out to promote the interoperability and value of sensor data in an IoT environment. To accomplish this, the semantic translation of sensor data is essential for convergence with service domain knowledge. The existing semantic translation technique, however, involves translating from static metadata into semantic data(RDF), and cannot properly process real-time and large-scale features in an IoT environment. Therefore, in this paper, we propose a technique for translating large-scale streaming sensor data generated in an IoT environment into semantic data, using real-time and parallel processing. In this technique, we define rules for semantic translation and store them in the semantic repository. The sensor data is translated in real-time with parallel processing using these pre-defined rules and an ontology-based semantic model. To improve the performance, we use the Apache Storm, a real-time big data analysis framework for parallel processing. The proposed technique was subjected to performance testing with the AWS observation data of the Meteorological Administration, which are large-scale streaming sensor data for demonstration purposes.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.18
no.4
/
pp.44-57
/
2019
Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.
KSCE Journal of Civil and Environmental Engineering Research
/
v.42
no.1
/
pp.35-44
/
2022
The VS30 map is used as a key variable for site amplification in the ShakeMap, which predicts ground motion at any site. However, no VS30 map considering Korean geology and geomorphology has been developed yet. To develop a proxy-based VS30 map, we used 1,101 VS profiles obtained from a geophysical survey and collected proxy layers of geological and topographical information for the Korean Peninsula. Then, VS30 prediction models were developed using linear regression analysis for each geological age considering the distribution of VS30. As a result, models depending on geomorphology were suggested per each geologic group, including Quaternary, Fill, Ocean, Mesozoic group and Precambrian. Resolution of map is doubled from that of VS30 map by U.S. Geological Survey (USGS). Standard deviation of residual in natural log of proxy-based VS30 map is 0.233, whereas standard deviation of slope-based USGS VS30 map is 0.387. Therefore, the proxy-based VS30 map developed in this study is expected to have less uncertainty and to contribute to predicting more accurately the ground motion amplitude.
After the first Covid-19 confirmed case occurred in Korea in January 2020, interest in personal transportation such as public bicycles not public transportation such as buses and subways, increased. The demand for 'Ddareungi', a public bicycle operated by the Seoul Metropolitan Government, has also increased. In this study, a demand prediction model of a GRU(Gated Recurrent Unit) was presented based on the rental history of public bicycles by time zone(2019~2021) in Seoul. The usefulness of the GRU method presented in this study was verified based on the rental history of Around Exit 1 of Yeouido, Yeongdengpo-gu, Seoul. In particular, it was compared and analyzed with multiple linear regression models and recurrent neural network models under the same conditions. In addition, when developing the model, in addition to weather factors, the Seoul living population was used as a variable and verified. MAE and RMSE were used as performance indicators for the model, and through this, the usefulness of the GRU model proposed in this study was presented. As a result of this study, the proposed GRU model showed higher prediction accuracy than the traditional multi-linear regression model and the LSTM model and Conv-LSTM model, which have recently been in the spotlight. Also the GRU model was faster than the LSTM model and the Conv-LSTM model. Through this study, it will be possible to help solve the problem of relocation in the future by predicting the demand for public bicycles in Seoul more quickly and accurately.
Yoon Hu Shin;Sung Min Kim;Yong Keun Jee;Young-Mi Lee;Byung-Sik Kim
Journal of Korean Society of Disaster and Security
/
v.15
no.4
/
pp.87-98
/
2022
In recent years, frequent localized heavy rainfalls, which have a lot of rainfall in a short period of time, have been increasingly causing flooding damages. To prevent damage caused by localized heavy rainfalls, Hydrological Quantitative Precipitation Forecast (HQPF) was developed using the Local ENsemble prediction System (LENS) provided by the Korea Meteorological Administration (KMA) and Machine Learning and Probability Matching (PM) techniques using Digital forecast data. HQPF is produced as information on the impact of heavy rainfall to prepare for flooding damage caused by localized heavy rainfalls, but there is a tendency to overestimate the low rainfall intensity. In this study, we improved HQPF by expanding the period of machine learning data, analyzing ensemble techniques, and changing the process of Probability Matching (PM) techniques to improve predictive accuracy and over-predictive propensity of HQPF. In order to evaluate the predictive performance of the improved HQPF, we performed the predictive performance verification on heavy rainfall cases caused by the Changma front from August 27, 2021 to September 3, 2021. We found that the improved HQPF showed a significantly improved prediction accuracy for rainfall below 10 mm, as well as the over-prediction tendency, such as predicting the likelihood of occurrence and rainfall area similar to observation.
KIPS Transactions on Software and Data Engineering
/
v.12
no.11
/
pp.493-504
/
2023
The Republic of Korea is located far from the boundary of the earthquake plate, and the intra-plate earthquake occurring in these areas is generally small in size and less frequent than the interplate earthquake. Nevertheless, as a result of investigating and analyzing earthquakes that occurred on the Korean Peninsula between the past two years and 1904 and earthquakes that occurred after observing recent earthquakes on the Korean Peninsula, it was found that of a magnitude of 9. In this paper, the Korean Peninsula Historical Earthquake Record (2 years to 1904) published by the National Meteorological Research Institute is used to analyze the relationship between earthquakes on the Korean Peninsula and statistical self-similarity. In addition, the problem solved through this paper was the first to investigate the relationship between earthquake data occurring on the Korean Peninsula and statistical self-similarity. As a result of measuring the degree of self-similarity of earthquakes on the Korean Peninsula using three quantitative estimation methods, the self-similarity parameter H value (0.5 < H < 1) was found to be above 0.8 on average, indicating a high degree of self-similarity. And through graph visualization, it can be easily figured out in which region earthquakes occur most often, and it is expected that it can be used in the development of a prediction system that can predict damage in the event of an earthquake in the future and minimize damage to property and people, as well as in earthquake data analysis and modeling research. Based on the findings of this study, the self-similar process is expected to help understand the patterns and statistical characteristics of seismic activities, group and classify similar seismic events, and be used for prediction of seismic activities, seismic risk assessments, and seismic engineering.
Journal of Korea Society of Industrial Information Systems
/
v.28
no.6
/
pp.91-98
/
2023
The amount of power generation of a solar plant has a high correlation with weather conditions, geographical conditions, and the installation conditions of solar panels. Previous studies have found the elements which impacts the amount of power generation. Some of them found the optimal conditions for solar panels to generate the maximum amount of power. Considering the realistic constraints when installing a solar power plant, it is very difficult to satisfy the conditions for the maximum power generation. Therefore, it is necessary to know how sensitive the solar power generation amount is to factors affecting the power generation amount, so that plant owners can predict the amount of solar power generation when examining the installation of a solar power plant. In this study, we propose a polynomial regression analysis method to analyze the relationship between solar power plant's power generation and related factors such as weather, location, and installation conditions. Analysis data were collected from 10 solar power plants installed and operated in Daegu and Gyeongbuk. As a result of the analysis, it was found that the amount of power generation was affected by panel type, amount of insolation and shade. In addition, the power generation was affected by interaction of the installation angle and direction of the panel.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.