DOI QR코드

DOI QR Code

Development of Korean Peninsula VS30 Map Based on Proxy Using Linear Regression Analysis

일반선형회귀분석을 이용한 프락시 기반 한반도 VS30지도 개발

  • 최인혁 (한양대학교 건설환경시스템공학과) ;
  • 유병호 (한양대학교 ERICA 건설환경공학과) ;
  • 곽동엽 (한양대학교 ERICA 건설환경공학과)
  • Received : 2020.12.09
  • Accepted : 2021.05.11
  • Published : 2022.02.01

Abstract

The VS30 map is used as a key variable for site amplification in the ShakeMap, which predicts ground motion at any site. However, no VS30 map considering Korean geology and geomorphology has been developed yet. To develop a proxy-based VS30 map, we used 1,101 VS profiles obtained from a geophysical survey and collected proxy layers of geological and topographical information for the Korean Peninsula. Then, VS30 prediction models were developed using linear regression analysis for each geological age considering the distribution of VS30. As a result, models depending on geomorphology were suggested per each geologic group, including Quaternary, Fill, Ocean, Mesozoic group and Precambrian. Resolution of map is doubled from that of VS30 map by U.S. Geological Survey (USGS). Standard deviation of residual in natural log of proxy-based VS30 map is 0.233, whereas standard deviation of slope-based USGS VS30 map is 0.387. Therefore, the proxy-based VS30 map developed in this study is expected to have less uncertainty and to contribute to predicting more accurately the ground motion amplitude.

VS30지도는 부지증폭을 나타내는 주요 변수로 임의의 부지에서 지반운동을 예측하는 ShakeMap의 핵심 변수로 사용된다. 하지만, 한반도의 지질특성과 지형특성을 고려하는 VS30지도는 아직 제시된 적이 없다. 이번 연구에서는 지질과 지형을 고려하는 VS30지도를 작성하기 위해 전단파 속도 주상도로부터 계산 또는 추정된 1,101개의 VS30과 한반도 광범위 지질, 지형정보 레이어를 수집하였다. 이러한 데이터와 일반선형회귀분석 방법을 사용하여 VS30 추정 모델을 개발하였다. 모델은 지질분류에 따라 매립지, 신생대 제4기 퇴적층, 중생대 그룹, 선캄브리아기와 해양층으로 구분된 후 지형정보의 함수로 제안되었다. 지도의 해상도는 기상청에서 기존에 진도추정을 위한 ShakeMap 구동에 사용하는 미국지질조사국(USGS)의 지도의 2배로 하였다. 그 결과, 프락시 기반 VS30지도의 대수로그 잔차의 표준편차는 0.233으로 USGS의 VS30 지도의 표준편차인 0.387보다 낮은 수치를 보인다. 본 연구에서 개발한 VS30지도를 사용한다면 ShakeMap의 불확실성이 줄어들 것으로 기대된다.

Keywords

Acknowledgement

이 연구는 「지진·지진해일·화산감시 및 예측기술 개발」 과제(과제번호: 1365003180) 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. NRF-2019R1F1A1062791). 이에 깊은 감사를 드립니다. 또한, 이 논문은 2020 CONVENTION 논문을 수정·보완하여 작성되었습니다.

References

  1. Akaike, H. (1973). "Information theory and an extension of maximum likelihood principle." Second International Symposium on Information Theory, pp. 267-281.
  2. Allen, T. I. and Wald, D. J. (2009). "On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30)." Bulletin of the Seismological Society of America, Vol. 99, No. 2A, pp. 935-943. https://doi.org/10.1785/0120080255
  3. Boore, D. M. and Joyner, W. B. (1997). "Site amplifications for generic rock sites." Bulletin of the seismological society of America, Vol. 87, No. 2, pp. 327-341. https://doi.org/10.1785/BSSA0870020327
  4. Campillo, M., Gariel, J. C., Aki, K. and Sanchez-Sesma, F. J. (1989). "Destructive strong ground motion in Mexico City: Source, path, and site effects during great 1985 Michoacan earthquake." Bulletin of the Seismological Society of America, Vol. 79, No. 6, pp. 1718-1735. https://doi.org/10.1785/BSSA0790061718
  5. Choi, I. H. and Kwak, D. Y. (2020). "Comparison of methods predicting VS30 form shallow VS profiles and suggestion of optimized coefficients." Journal of the Korean Geotechnical Society, Vol. 36, No. 3, pp. 15-23 (in Korean). https://doi.org/10.7843/KGS.2020.36.3.15
  6. Farr, T. G. and Kobrick, M. (2000). "Shuttle radar topography mission produces a wealth of data." Eos, Transactions American Geophysical Union, Vol. 81, No. 48, pp. 583-585. https://doi.org/10.1029/EO081i048p00583
  7. Horn, B. K. (1981). "Hill shading and the reflectance map." Proceedings of the IEEE, Vol. 69, No. 1, pp. 14-47. https://doi.org/10.1109/PROC.1981.11918
  8. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2020a). 1:50,000 Geology layer, Korea Institute of Geoscience and Mineral Resources, KIGAM, Available at: https://mgeo.kigam.re.kr/ (Accessed: September 10, 2020) (in Korean).
  9. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2020b). 1:250,000 Geology Layer, Korea Institute of Geoscience and Mineral Resources, KIGAM, Available at: https://mgeo.kigam.re.kr/ (Accessed: September 10, 2020) (in Korean).
  10. Korea Meteorological Administration (KMA) (2018). Research on application and support for the earthquake and volcanic service (I): Requirement of stabilization of earthquake early warning system and provision of accurate intensity information, No. 11-1360000-001525-10, pp. 14-23 (in Korean).
  11. Matsuoka, M., Wakamatsu, K., Fujimoto, K. and Midorikawa, S. (2006). "Average shear-wave velocity mapping using Japan engineering geomorphologic classification map." Structural Engineering/Earthquake Engineering, Vol. 23, No. 1, pp. 57s-68s. https://doi.org/10.2208/jsceseee.23.57s
  12. Michelini, A., Faenza, L., Lauciani, V. and Malagnini, L. (2008). "ShakeMap implementation in Italy." Seismological Research Letters, Vol. 79, No. 5, pp. 688-697. https://doi.org/10.1785/gssrl.79.5.688
  13. Midorikawa, S. and Nogi, Y. (2015). "Estimation of VS30 from shallow velocity profile." Journal of Japan Association for Earthquake Engineering, Vol. 15, No. 2, pp. 91-96 (in Japanese).
  14. Nation Global Information Infra (NGII) (2019). National territory information platform - DEM90, Nation Global Information Infra, NGII, Available at: http://map.ngii.go.kr/ (Accessed: September 10, 2020) (in Korean).
  15. National Spatial Data Infrastructure Portal (NSDI) (2020). Korean land registration map. National Spatial Data Infrastructure Potal, NSDI, Available at: http://openapi.nsdi.go.kr/ (Accessed: September 10, 2020) (in Korean).
  16. QGIS.org (2019). QGIS Geographic Information System. QGIS Association, Available at: http://qgis.org/ (Accessed: September 5, 2020).
  17. Robinson, N., Regetz, J. and Guralnick, R. P. (2014). EarthEnv - DEM90 digital elevation model, EarthEnv Project, Available at: https://www.earthenv.org/DEM (Accessed: September 10, 2020).
  18. Schwarz, G. (1978). "Estimating the dimension of a model." Annals of Statistics, Vol. 6, No. 2, pp. 461-464. https://doi.org/10.1214/aos/1176344136
  19. Sun, C. G., Kim, H. J. and Chung, C. K. (2008). "Deduction of correlations between shear wave velocity and geotechnical in-situ penetration test data." Journal of the Earthquake Engineering Society of Korea, Vol. 12, No. 4, pp. 1-10 (in Korean). https://doi.org/10.5000/EESK.2008.12.4.001
  20. United States Geological Survey (USGS) (2019). Digital elevation-shuttle radar topography mission (STRM) 1 Arc-second global, United States Geological Survey, USGS, Available at: https://earthexplorer.usgs.gov/ (Accessed: September 10, 2019).
  21. United States Geological Survey (USGS) (2020). Global VS30 map, United States Geological Survey, USGS, Available at: https://earthquake.usgs.gov/data/vs30/ (Accessed: May 15, 2020).
  22. Wald, D. J. and Allen, T. I. (2007). "Topographic slope as a proxy for seismic site conditions and amplification." Bulletin of the Seismological Society of America, Vol. 97, No. 5, pp. 1379-1395. https://doi.org/10.1785/0120060267
  23. Wald, D. J., Worden, B. C., Quitoriano, V. and Pankow, K. L. (2006). ShakeMap® manual, Technical Manual, users guide, and software guide Version, Virginia.
  24. Yoo, D. G., Lee, C. W., Min, G. H., Han, H. S., Park, S. C. and Kim, D. C. (2006). "Plio-Quaternary seismic stratigraphy and sedimentation of depositional sequences on the southeastern continental shelf of Korea." Journal of the Geological Society of Korea, Vol. 42, No. 4, pp. 507-522 (in Korean).