• Title/Summary/Keyword: 기반암 심도

Search Result 107, Processing Time 0.03 seconds

Detection of Groundwater Table Changes in Alluvium Using Electrical Resistivity Monitoring Method (전기비저항 모니터링 방법을 이용한 충적층 지하수위 변동 감지)

  • 김형수
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.139-149
    • /
    • 1997
  • Electrical resistivity monitoring methods were adopted to detect groundwater table change in alluvium. Numerical modelling test using finite element method(FEM) and field resisfivity monitoring were conducted in the study. The field monitoring data were acquired in the alluvium deposit site in Jeong-Dong Ri, Geum River where pumping test had been conducted continuously for 20 days to make artificial changes of groundwater table. The unit distance of the electrode array was 4m and 21 fixed electrodes were applied in numerical calculation and field data acquisition. "Modified Wenner" and dipole-dipole array configurations were used in the study. The models used in two-dimensional numerical test were designed on the basis of the simplifving geological model of the alluvium in Jeong Dong Ri, Geum River. Numerical test results show that the apparent resistivity pseudosections were changed in the vicinity of the pootion where groundwater table was changed. Furthermore, there are some apparent resistivity changes in the boundary between aquifer and crystalline basement rock which overlays the aquifer. The field monitoring data also give similar results which were observed in numerical tests. From the numerical test using FEM and field resistivity monitoring observations in alluvium site of Geum River, the electrical monitoring method is proved to be a useful tool for detecting groundwater behavior including groundwater table change. There are some limitations, however, in the application of the resistivity method only because the change of groundwater table does not give enough variations in the apparent resistivity pseudosections to estimate the amount of groundwater table change. For the improved detection of groundwater table changes, it is desirable to combine the resistivity method with other geophysical methods that reveal the underground image such as high-resolution seismic and/or ground penetrating radar surveys.

  • PDF

Stratigraphy of the Central Sub-basin of the Gunsan Basin, Offshore Western Korea (한국 서해 대륙붕 군산분지 중앙소분지의 층서)

  • Kim, Kyung-min;Ryu, In-chang
    • Economic and Environmental Geology
    • /
    • v.51 no.3
    • /
    • pp.233-248
    • /
    • 2018
  • Strata of the Central sub-basin in the Gunsan Basin, offshore, western Korea were analyzed by using integrated stratigraphy approach. As a result, five distinct unconformity-bounded units are recognized in the basin: Sequence I (Cretaceous or older(?)), Sequence II (Late Cretaceous), Sequence III (late Late Cretaceous or younger(?)), Sequence IV (Early Miocene or older(?)), Sequence V (Middle Miocene). Since the late Late Jurassic, along the Tan-Lu fault system wrench faults were developed and caused a series of small-scale strike-slip extensional basins. The sinistral movement of wrench faults continued until the Late Cretaceous forming a large-scale pull-apart basin. However, in the Early Tertiary, the orogenic event, called the Himalayan Orogeny, caused basin to be modified. From Late Eocene to Early Miocene, tectonic inversion accompanied by NW strike folds occurred in the East China. Therefore, the late Eocene to Oligocene was the main period of severe tectonic modification of the basin and Oligocene formation is hiatus. The rate of tectonic movements in Gunsan Basin slowed considerably. In that case, thermal subsidence up to the present has maintained with marine transgressions, which enable this area to change into the land part of the present basin.

Geostatistical Interpretation of Sparsely Obtained Seismic Data Combined with Satellite Gravity Data (탄성파 자료의 해양분지 구조 해석 결과 향상을 위한 인공위성 중력자료의 지구통계학적 해석)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kwon, Byung-Doo;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.252-258
    • /
    • 2007
  • We have studied the feasibility of geostatistics approach to enhancing analysis of sparsely obtained seismic data by combining with satellite gravity data. The shallow depth and numerous fishing nets in The Yellow Sea, west of Korea, makes it difficult to do seismic surveys in this area. Therefore, we have attempted to use geostatistics to integrate the seismic data along with gravity data. To evaluate the feasibility of this approach, we have extracted only a few seismic profile data from previous surveys in the Yellow Sea and performed integrated analysis combining with the results from gravity data under the assumption that seismic velocity and density have a high physical correlation. First, we analyzed the correlation between extracted seismic profiles and depths obtained from gravity inversion. Next, we transferred the gravity depth to travel time using non-linear indicator transform and analyze residual values by kriging with varying local means. Finally, the reconstructed time structure map was compared with the original seismic section given in the previous study. Our geostatistical approach demonstrates relatively satisfactory results and especially, in the boundary area where seismic lines are sparse, gives us more in-depth information than previously available.

Seismic Structures of the Eastern Bransfield Basin, Antarctic Peninsula (남극반도 동부 브랜스필드분지의 탄성파구조)

  • Jin, YoungKeun;Nam, SangHeon;Kim, YeaDong;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.2
    • /
    • pp.99-112
    • /
    • 2004
  • The Basin, a marginal basin located between the Antarctic Peninsula and the South Shetland Islands, is consist of three small basins, the Central, Eastern, Western Basins. Seismic data obtained on December 1995 show well-defined spreading ridges, basement highs, faults, morphology of the basin, distribution of sediments, crustal and sedimentary deformation, diapirs, and contourites. The main spreading axis of the Central Bransfield Basin connecting Deception and Bridgeman Islands continues up to the central part of the Eastern Basin, whereas deep basin covered by thick sediments without any spreading structures develops in the northeastern part. This indicates that back-arc spreading along the axis of the Bransfield Basin has been taken place in the southwestern part of the Eastern Basin, not in the northeastern part. Many NW-SE trending faults perpendicular to the axis of the basin would be related with strike-slip movement of the Shackleton Fracture. Zone. Extensinal strutures like deep basin without any spreading structures in the northeastern part, normal faults and diapirs on both continental slopes of the Eastern Basin would be formed by extension as a consequence of the sinistral movement between Antarctic and the Scotia plates.

  • PDF

Preliminary Evaluation of Domestic Applicability of Deep Borehole Disposal System (심부시추공 처분시스템의 국내적용 가능성 예비 평가)

  • Lee, Jongyoul;Lee, Minsoo;Choi, Heuijoo;Kim, Kyungsu;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.491-505
    • /
    • 2018
  • As an alternative to deep geological disposal technology, which is considered as a reference concept, the domestic applicability of deep borehole disposal technology for high level radioactive waste, including spent fuel, has been preliminarily evaluated. Usually, the environment of deep borehole disposal, at a depth of 3 to 5 km, has more stable geological and geo-hydrological conditions. For this purpose, the characteristics of rock distribution in the domestic area were analyzed and drilling and investigation technologies for deep boreholes with large diameter were evaluated. Based on the results of these analyses, design criteria and requirements for the deep borehole disposal system were reviewed, and preliminary reference concept for a deep borehole disposal system, including disposal container and sealing system meeting the criteria and requirements, was developed. Subsequently, various performance assessments, including thermal stability analysis of the system and simulation of the disposal process, were performed in a 3D graphic disposal environment. With these analysis results, the preliminary evaluation of the domestic applicability of the deep borehole disposal system was performed from various points of view. In summary, due to disposal depth and simplicity, the deep borehole disposal system should bring many safety and economic benefits. However, to reduce uncertainty and to obtain the assent of the regulatory authority, an in-situ demonstration of this technology should be carried out. The current results can be used as input to establish a national high-level radioactive waste management policy. In addition, they may be provided as basic information necessary for stakeholders interested in deep borehole disposal technology.

High Resolution Seismic Reflection Method Using S-Waves: Case Histories for Ultrashallow Bedrocks (S파를 이용한 고해상도 탄성파 반사법 탐사: 지반표층부에 대한 적용사례)

  • Kim Sung-Woo;Woo Ki-Han;Han Myung-Ja;Jang Hae-Dong;Choi Yong-Kyu;Kong Young-Sae
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • This paper demonstrates the feasibility of using shallow S-wave, high-resolution seismic reflection surveys to characterize geological structure and stratigraphy of basement rocks for civil engineering purposes. S-wave seismic reflections from depths less than 20 m were recorded along the top of steep readout slopes. Seismic reflection data were recorded using a standard CDP acquisition method with a 24-channel seismograph and a sledge-hammer SH-wave source. The data were acquired using a split-spread source-receiver geometry with a 2 m shot-and-receiver interval, and then were processed to enhance S/N ratio of the data, to improve resolvable power of the seismic section, and to get velocity information of the basement rock. The final seismic reflection profiles using the CDP technique has imaged surfaces as shallow as less than 1m and resolved beds as thin as 1m. The migrated reflection sections possess sufficient quality to correlate the prominent reflection events to the bedding planes and faults identified on the readout outcrops. Similar S-wave reflection surveys could also be used to produce the necessary details of a geological structure of shallow bedrocks to pinpoint optimum locations for monitor wells of civil engineering purposes.

Case studies of shallow marine investigations in Australia with advanced underwater seismic refraction (USR) (최신 수중 탄성파 굴절법(USR)을 이용한 호주의 천부해양탐사 사례연구)

  • Whiteley, Robert J.;Stewart, Simon B.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2008
  • Underwater seismic refraction with advanced interpretation approaches makes important contributions to shallow marine exploration and geotechnical investigations in Australia's coastal areas. A series of case studies are presented to demonstrate the recent applications of continuous and static USR methods to river crossing and port infrastructure projects at various sites around Australia. In Sydney, static underwater seismic refraction (USR) with bottom-placed receivers and borehole seismic imaging assisted the development of improved geotechnical models that reduced construction risk for a tunnel crossing of the Lane Cove River. In Melbourne, combining conventional boomer reflection and continuous USR with near-bottom sources and receivers improved the definition of a buried, variably weathered basalt flow and assisted dredging assessment for navigation channel upgrades at Geelong Ports. Sand quality assessment with continuous USR and widely spaced borehole information assisted commercial decisions on available sand resources for the reclamation phase of development at the Port of Brisbane. Buried reefs and indurated layers occur in Australian coastal sediments with the characteristics of laterally limited, high velocity, cap layers within lower velocity materials. If these features are not recognised then significant error in depth determination to deeper refractors can occur. Application of advanced refraction inversion using wavefront eikonal tomography to continuous USR data obtained along the route of a proposed offshore pipeline near Fremantle allowed these layers and the underlying bedrock refractor to be accurately imaged. Static USR and the same interpretation approach was used to image the drowned granitic regolith beneath sediments and indurated layers in the northern area of Western Australia at a proposed new berthing site where deep piling was required. This allowed preferred piling sites to be identified, reducing overall pile lengths. USR can be expected to find increased application to shallow marine exploration and geotechnical investigations in Australia's coastal areas as economic growth continues and improved interpretation methods are developed.

Crustal Characteristics and Structure of the Ulleung Basin, the East Sea (Japan Sea), Inferred from Seismic, Gravity and Magnetic Data (탄성파 및 중자력자료에 의한 울릉분지의 지각특성 및 구조 연구)

  • Huh, Sik;Kim, Han-Jun;Yoo, Hai-Soo;Park, Chan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.95-104
    • /
    • 2000
  • Depths to four seismic sequence boundaries and the thickness of each sequence were estimated and mapped based on multi-channel seismic data in the Ulleung Basin. These depth-structure and isopach maps were incorporated into the interpretation of gravity and magnetic anomaly maps. The sediment thickness ranges from 3,000 m to 4,000 m in the central basin, while it reaches 6,000 m locally along the southwestern, western, and southeastern margins. The acoustic basement forms a northeast-southwest elongated depression deeper than 5000 m, and locally deepens up to 7,500 m in the southwestern and western margins. Low gravity anomalies along the western and southern margins are associated with basement depressions with thick sediment as well as the transitional crust between the continental and oceanic crusts. Higher gravity anomalies, dominant in the central Ulleung basin, broaden from southwest toward northeast, are likely due to the shallow mantle and a dense crust. A pair of magnetic elongations in the southeastern and northwestern margins appear to separate the central Ulleung basin from its margin. These magnetic elongations are largely dominated by intrusive or extrusive volcanics which occurred along the rifted margin of the Ulleung basin formed during the basin opening. The crust in the central Ulleung Basin, surrounded by the magnetic elongations, is possibly oceanic as inferred from the seismic velocity. The oceanic crust can be mapped in the central zone where it widens to 120 km from the southwest toward northeast. Bending of the crustal boundary in the southern part of the Ulleung Basin suggests that the Ulleung Basin has been deformed by a collision of the Phillipine plate into the Japan arc.

  • PDF

Potential as a Geological Field Course of Mt. Geumdang located in Gwangju, Korea (광주광역시에 위치한 금당산의 지질학습장으로서 활용성)

  • Ahn, Kun Sang
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.235-248
    • /
    • 2013
  • The purpose of this study is to investigate a feasibility of a small mountain as a field work site on geological features in Earth sciences classes at all levels. Mt. Geumdang with the height of 305 meters from the sea level is located in the metropolitan city of Gwangju, southern part of Korea. The study reviews the human and natural geography, geological features, geomorphic resources, landscapes, and conveniences of the mountain for a possibility of meaningful field work. The population within the distance of 5 km from the mountain stands at about 620,000 and 170,000 of them are students and teachers. Mt. Geumdang has a warm temperature climate with low rainfall throughout the year, so it seems suitable for a field survey. Road network and public transportation system around the area are well-developed and easily accessible. Mt. Geumdang shows various rock type and geological structures. The basement rock is Gwangju granite, which is plutonic body of the Jurassic period. Also, granophyre (micrographic granite) and various volcanic rocks distributed as bedded tuff, lapilli tuff, and rhyolite of the Cretaceous period. Many andesitic and felsic dykes were intruded into the rock by joint system. In Mt. Geumdang, many geomorphic resources are found such as U shaped mountain, joint, fault, lamination, gnamma, tor, cliff, groove, block stream and block field, regolith, and saprolite. It has a beautiful mountain scenery including the view of whole shape of Mt. Mudeung, panoramic view of the town, Pungam lake, World Cup stadium and sunrise and sunset. Furthermore, the area has ecologic study facilities related to geology, emergency medical and convenience facilities for field works. In conclusion, Mt. Geumdang is highly feasible for geological field studies at all levels.

Seismic Stratigraphy and Evolutionary History of Submarine Canyon in the Northwestern Part of the Ulleung Basin, East Sea (동해 울릉분지 북서해역에 분포하는 해저협곡의 탄성파 층서와 발달사)

  • Kim, Ji Hyun;Kang, Nyeon Keon;Yi, Bo Yeon;Park, Yong Joon;Yoo, Dong Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.146-162
    • /
    • 2017
  • Multibeam and seismic data in the northwestern part of the Ulleung Basin were analyzed to study stratigraphy and evolutionary history of submarine canyon. A detailed analysis reveals that the sedimentary sequences in this area consist of four stratigraphic units separated by erosional unconformities. On the continental slope, these units are dominated by well-stratified facies with some slope failures, whereas these units show well-stratified and chaotic facies toward the basin floor. Generally, the sediment thickness is relatively thin on the slope, whereas thick sediment accumulation occurs on the base of slope and basin floor. Based on seismic characteristics and distribution, the deposition of each units are well correlated with the evolutionary history of the submarine canyon. Unit 1 directly overlying the acoustic basement has thin sediment layer on the slope, whereas its thickness gradually increase toward the basin floor. Compared to other units, Unit 2 is relatively thick accumulations on the slope and contains some slope failures related to faults systems. The mass transport sediments due to slope failures, mainly deposited on the base of slope as a submarine fan. The width and depth of submarine canyon increase due to dominant of the erosional process rather than the sediment deposition. Unit 3 is thin accumulation on the slope around the submarine canyon. Toward the basin floor, its thickness gradually increases. Unit 4 is characterized by thin layers including slides and slumps on the slope, whereas it formed thick accumulations at the base of slope as a submarine fan. The increase in the width and depth of submarine canyon results from the dominant of the erosional process and slope failures around the submarine canyon. Consequently, the formation of sedimentary units combined with the development of submarine canyon in this area is largely controlled by the amounts of sediment supply originated from slope failures, regional tectonic effects and sea-level fluctuations.