• Title/Summary/Keyword: 기구학 해석

Search Result 241, Processing Time 0.035 seconds

Kinematic Analysis of Torsion Beam Rear Suspension (토션빔 후륜 현가장치의 기구학적 특성 해석)

  • 강주석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.146-153
    • /
    • 2004
  • Torsion beam rear suspension has been widely adopted to the rear suspension of vehicle by reason of simple structure and cost competitiveness. Since the kinematic characteristics of torsion beam rear suspension are determined by elastic behavior of torsion beam, quasi-static analysis based on finite element modeling of torsion beam has been conducted to obtain the kinematic parameters of torsion beam rear suspension. In this paper, simple kinematic equations with rear geometric parameters are derived to predict the kinematic behavior of torsion beam rear suspension. The suspension design parameters such as roll center height, roll stiffness, roll steer and roll camber can be easily obtained with the kinematic equations. The suggested kinematic equations are validated from comparison with the test results and solution offered by ADAMS. The suspension design parameters varied with the position of torsion beam are discussed.

Aerodynamic Noise Prediction of a Helicopter Rotor Blade for the Flight Conditions of Approach and Flyover (비행 조건 별 헬리콥터 로터 블레이드 공력 소음 예측)

  • Wie, Seong-Yong;Kang, Hee Jung;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.671-678
    • /
    • 2018
  • Helicopter noise prediction is an essential process for developing low noise helicopter technology. In this paper, the noise prediction method is developed using the helicopter integrated performance analysis program CAMRAD-II and in-house noise analysis code. In addition, the analytical technique was verified by analyzing blade-vortex interaction noise, which is the biggest cause of helicopter noise. In order to predict the actual helicopter noise, the noise analysis was performed for the flyover and approach condition, which is the standard measurement condition of the International Civil Aviation Organization (ICAO). Finally, we confirmed the suitability of the analytical method through comparison and analysis with the flight test results.

Structure Analysis of the Light Robot Manipulator Capable of Handling Heavy Payloads (고가반 하중 이송가능한 경량 로봇 매니퓰레이터의 구조해석 연구)

  • Choi, Hyeung-Sik;Cho, Jong-Rae;Hur, Jae-Gwan;Chun, Chi-Kwang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.318-324
    • /
    • 2010
  • In this paper, the structure of the gravity compensator has been designed and applied to a light structure of a new 6-axis robot manipulator to enhance its torque performance. Also, analyses on the kinematics and inverse-kinematics of the manipulator have been performed. An FEM analysis has been performed on the structure of robot links to have an excellent performance of delivering 25 kg payload despite of 30kg weight, which is very light compared with other manipulators. Through the FEM analysis, the stability on the vending or fracture of the links of the robot manipulator has been verified.

Implementation of a New Parallel Spherical 3-Degree-of-Freedom Mechanism With Excellent Kinematic Characteristics (우수한 기구학 특성을 가지는 새로운 병렬형 구형 3자유도 메커니즘의 구현)

  • 이석희;김희국;오세민;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.299-303
    • /
    • 2004
  • In our pervious paper, a new parallel-type spherical 3-degree-of-freedom mechanism consisting of a two-degree-of-freedom parallel module and a serial RRR subchain was proposed[1]. In this paper, its improved version is suggested and implemented. Differently from the previous 3-dof spherical mechanism, gear chains are incorporated into the current version of the mechanism to drive the distal revolute joint of the serial subchain from the base of the mechanism and in fact, the modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, after a brief description on its structure, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model of the mechanism for the inputs which are assumed to be located at the base is derived. Thirdly, through the simulations of the kinematic analysis via. kinematic isotropic index, it is confirmed that the mechanism has much more improved isotropic properties throughout the workspace of the mechanism than the previous mechanism in [1]. Lastly, the proposed mechanism is implemented to verify the results from this analysis.

  • PDF

A study on design, experiment control of the waterproof robot arm (방수형 로봇팔의 설계, 실험 및 제어 연구)

  • Ha, Jihoon;Joo, Youngdo;Kim, Donghee;Kim, Joon-Young;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.648-657
    • /
    • 2014
  • This paper is about the study on a newly developed small waterproofed 4-axis robot arm and the analysis of its kinematics and dynamics. The structure of robot arm is designed to have Pitch-Pitch-Pitch-Yaw joint motion for inspection using a camera on itself and the joint actuator driving capacity are selected and the joint actuators are designed and test for 10m waterproofness. The closed-form solution for the robot arm is derived through the forward and inverse kinematics analysis. Also, the dynamics model equation including the damping force due to the mechanical seal for waterproofness is derived using Newton-Euler method. Using derived dynamics equation, a sliding mode controller is designed to track the desired path of the developed robot arm, and its performance is verified through a simulation.

A Study on the Inveres Kinematic Analysis of a Casing Oscillator (케이싱 오실레이터의 역기구학 해석)

  • Lee, Eun-Jun;Bae, Jae-Man;Park, Myeong-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.47-53
    • /
    • 2000
  • The casing oscillator is a construction equipment to clamp, oscillate and push a casing for foundation work. In case that the casing oscillator is operated on the slant ground, if another construction heavy equipment is not used, it is impossible to insert the casing in ground using only casing oscillator. So in this paper, we present the new casing oscillator that need not to level the ground for work of casing insertion. This mechanism can execute 4 DOF motion by actuating 5 single - rod hydraulic cylinders. The inverse kinematics analysis of the casing oscillator is performed and we verify the validity of kinematics analysis through the experiment.

  • PDF

A New Kinematic Analysis of 6-3 Stewart Platform Manipulator (6-3 스튜워트 플랫폼 운동장치의 새로운 기구학 해석방법)

  • Kim, Nak-In;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1206-1212
    • /
    • 2001
  • The kinematic analysis of Stewart platform manipulator(SPM) is carried out in order to reduce the calculation time for its forward kinematic solution when the iterative numerical method is employed. The kinematic equations for three substructures of the 6-3 SPM are newly derived by introducing Denavit-Hartenberg link parameters and using kinematic constraints associated with the SPM and substructure kinematics. It is shown that the forward kinematics can be easily solved from three nonlinear equations with three unknown variables only, leading to a great reduction in calculation time.

Velocity and Friction Force Distribution in Rotary CMP Equipment (회전형 CMP장비의 속도 및 마찰력 분포 해석)

  • Kim, Hyeong Jae;Jeong, Hae Do;Lee, Eung Suk;Sin, Yeong Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.39-39
    • /
    • 2003
  • As the design rules in semiconductor manufacturing process become more and more stringent, the higher degree of planarization of device surface is required for a following lithography process. Also, it is great challenge for chemical mechanical polishing to achieve global planarization of 12” wafer or beyond. To meet such requirements, it is essential to understand the CMP equipment and process itself. In this paper, authors suggest the velocity distribution on the wafer, direction of friction force and the uniformity of velocity distribution of conventional rotary CMP equipment in an analytical method for an intuitive understanding of variation of kinematic variables. To this end, a novel dimensionless variable defined as “kinematic number” is derived. Also, it is shown that the kinematic number could consistently express the velocity distribution and other kinematic characteristics of rotary CMP equipment.

Velocity and Friction Force Distribution in Rotary CMP Equipment (회전형 CMP장비의 속도 및 마찰력 분포 해석)

  • 김형재;정해도;이응숙;신영재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.29-38
    • /
    • 2003
  • As the design rules in semiconductor manufacturing process become more and more stringent, the higher degree of planarization of device surface is required for a following lithography process. Also, it is great challenge for chemical mechanical polishing to achieve global planarization of 12” wafer or beyond. To meet such requirements, it is essential to understand the CMP equipment and process itself. In this paper, authors suggest the velocity distribution on the wafer, direction of friction force and the uniformity of velocity distribution of conventional rotary CMP equipment in an analytical method for an intuitive understanding of variation of kinematic variables. To this end, a novel dimensionless variable defined as “kinematic number” is derived. Also, it is shown that the kinematic number could consistently express the velocity distribution and other kinematic characteristics of rotary CMP equipment.

Partial Preconditioning Approach for the Solution of Detailed Kinetics Problems Based on Sensitivity Analysis (효율적인 상세 반응 기구 해석을 위한 민감도 기반의 부분 음해법)

  • Kang, K.H.;Moon, S.Y.;Noh, J.H.;Won, S.H.;Choi, J.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • A partly implicit/quasi-explicit method is introduced for the solution of detailed chemical kinetics with stiff source terms based on the standard fourth-order Runge-Kutta scheme. Present method solves implicitly only the stiff reaction rate equations, whereas the others explicitly. The stiff equations are selected based on the survey of the chemical Jaconian matrix and its Eigenvalues. As an application of the present method constant pressure combustion was analyzed by a detailed mechanism of hydrogen-air combustion with NOx chemistry. The sensitivity analysis reveals that only the 4 species in NOx chemistry has strong stiffness and should be solved implicitly among the 13 species. The implicit solution of the 4 species successfully predicts the entire process with same accuracy and efficiency at half the price.

  • PDF