• Title/Summary/Keyword: 기공 생성

Search Result 245, Processing Time 0.023 seconds

A Mechanistic Model for In-Reactor Densification of U$O_2$ (U$O_2$ 핵연료의 노내 기계론적 고밀화 모형)

  • Woan Hwang;Keum Seok Seo;Ho Chun Suk
    • Nuclear Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.116-128
    • /
    • 1985
  • Considering vacancy generation and migration in grain and sink at grain boundary, a mechanistic densification model which is dependent on UO$_2$ temperature and microstructure has been developed. This densification model is a function of time, fission rate, temperature, density, pore size distribution and grain size. The resultant equation derived in this model which is different from Assmann and Stehle's resultant equations for four temperature regions, can be applied directly for all the pellet temperatures. The predictions of the present densification model very well agreed with the experimental data. This model well predicts absolute magnitude and trend in comparison with the empirical algorithm used in KFEDA code.

  • PDF

A Study on Virtual Tooth Image Generation Using Deep Learning - Based on the number of learning (심층 학습을 활용한 가상 치아 이미지 생성 연구 -학습 횟수를 중심으로)

  • Bae, EunJeong;Jeong, Junho;Son, Yunsik;Lim, JoonYeon
    • Journal of Technologic Dentistry
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Purpose: Among the virtual teeth generated by Deep Convolutional Generative Adversarial Networks (DCGAN), the optimal data was analyzed for the number of learning. Methods: We extracted 50 mandibular first molar occlusal surfaces and trained 4,000 epoch with DCGAN. The learning screen was saved every 50 times and evaluated on a Likert 5-point scale according to five classification criteria. Results were analyzed by one-way ANOVA and tukey HSD post hoc analysis (α = 0.05). Results: It was the highest with 83.90±6.32 in the number of group3 (2,050-3,000) learning and statistically significant in the group1 (50-1,000) and the group2 (1,050-2,000). Conclusion: Since there is a difference in the optimal virtual tooth generation according to the number of learning, it is necessary to analyze the learning frequency section in various ways.

Formation Mechanism of Pores in Ni-P Coated Carbon Fiber Prepared by Electroless Plating Upon Annealing (무전해 니켈-인 도금법을 이용하여 도금된 탄소 섬유의 열처리 과정에서 나타나는 다공성 구조 생성 메커니즘 분석)

  • Ham, Seung Woo;Sim, Jong Ki;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.438-442
    • /
    • 2013
  • In the present work, electroless plating was used for coating thin films consisting mainly of Ni and P on carbon fiber. Structural changes appeared upon the post-annealing at various temperatures of the Ni-P film on carbon fiber was studied using various analysis methods. Scanning, a flat surface structure of Ni-P film on carbon fiber was found after electroless plating of Ni-P film on carbon fiber without post-annealing, whereas annealing at $350^{\circ}C$ resulted the formation of porous structures. With increasing the annealing temperature to $650^{\circ}C$ with an interval of $50^{\circ}C$, the pore size increased, but the density decreased. X-ray diffraction (XRD) showed the existence of metallic Ni, and Ni-P compounds before post-annealing, whereas the post-annealing resulted in the appearance of NiO peaks, and the decrease in the intensity of the peak of metallic Ni. Using X-ray photoelectron spectroscopy (XPS), phosphorous oxides were detected on the surface upon annealing at $650^{\circ}C$, and $700^{\circ}C$, which can be attributed to the phosphorous compounds originally existing in the deeper layers of the Ni films, which undergo sublimation and escape from the film upon annealing. Escape of phosphorous species from the bulk of Ni-P film upon annealing could leave a porous structure in the Ni films. Porous materials can be of potential applications in diverse fields due to their interesting physical properties such as high surface area, and methods for fabricating porous Ni films introduced here could be easily applied to a large-scale production, and therefore applicable in diverse fields such as environmental filters.

Characterization and Preparation of Al-Pillared Clay (Aluminium-Pillared Clay의 제조 및 특성)

  • Park, Se-Jun;Ha, Baik-Hyon;Jeong, Soon-Yong;Suh, Jeong-Kwon;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.304-309
    • /
    • 1999
  • Aluminum-pillared clay was prepared by the intercalation of Al-hydroxy oligomer into domestic bentonite. The solid products are characterized by XRD, nitrogen adsorption/desorption, EDX, and SEM. The solid products show relatively high specific surface areas in the range of $104{\sim}228m^2/g$, and their specific surface area, micropore surface area, and micropore volume increase with increasing the mole ratio of OH/Al. From the results of pore size distribution calculated by BJH equation, it was found that aluminum-pillared clay also contains much mesopore near $40{\AA}$. These results indicate that Al-hydroxy oligomer was intercalated into bentonite, and aluminum oxide was pillared among the layers of bentonite, and micropore and mesopore was finally developed into layers. As OH/Al mole ratio increases, the thermal stability of aluminum-pillared clay increases. This result can be explained by the fact that the density of layers is increased due to the formation of aluminum pillars.

  • PDF

Studies on the Effects of Variables on the Fabrication Of C/SiC Composite by Chemical Vapor Infiltration in a Fluidized Bed Reactor (유동층반응기에서 화학증기침투에 의한 C/SiC의 복합체 제조시 변수의 영향 연구)

  • Lee, Sung-Joo;Kim, Yung-Jun;Kim, Mi-Hyun;Rim, Byung-O;Chung, Gui-Yung
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.843-847
    • /
    • 1999
  • In this research, C/SiC composites, i.e. activated carbon coated with SiC obtained from dichlorodimethylsilane(DDS) and hydrogen, have been made by chemical vapor infiltration(CVI) in a fluidized bed reactor. Activated carbons of sizes of 4~12, 12~20, and 20~40 mesh were used. After deposition the surface area, the amount and the shape of deposit of each sample were observed at different concentrations of reactant DDS, sizes of activated carbon, reaction pressures and reaction times. The experimental results showed that uniform deposition in the pores of sample was obtained at a lower concentration of DDS and a lower pressure. Additionally, from the observation that the pore diameter and the surface area have minimum values at a certain time of deposition, it was known that deposition occurred inside of the pore at first and then on the outside of particle. Small particles of SiC were deposited uniformly on the surface of activated carbon at lower DDS concentrations and lower reaction pressures. The results were confirmed by SEM, TGA, the pore size distribution analyzer and BET.

  • PDF

Optimization of hydrochar generated from real food waste using titration methods (음식물폐기물-하이드로촤 최적 반응조건 도출을 위한 적정법 응용)

  • Choi, Minseon;Choi, Seong-Eun;Han, Sol;Bae, Sunyoung
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Hydrochar has been generated from food waste via hydrothermal carbonization (HTC) reaction. As a solid product of HTC reaction, hydrochar has a great potential as an adsorbent of pollutants from the various media. The surface area and pore volumes are very important parameters to be served as an adsorbent. It requires an expensive equipment and consumes time to measure those parameter. Therefore, titration methods including iodine and methylene blue adsorption were evaluated to be correlated with that of BET analysis. Even though the absolute values of the computed surface area and pore volumes were not able to be matched directly, the patterns of change were successfully correlated. Among the reaction conditions, the reaction time and temperature at $230^{\circ}C$ for 4 h was determined as an optimization condition, which confirmed by titration method and BET analysis. Titration method for surface area and pore volumes computed by combination of iodine and methylene blue adsorbing values would be a simple and fast way of determining the optimization condition for hydrochar as an adsorbent produced by HTC reaction.

Characteristics of Mine Liner According to the Replacement Ratio of Nano-Silica and Silica-Fume (나노실리카 및 실리카흄 대체율에 따른 차수재의 특성)

  • Kang, Suk-Pyo;Lee, Hee-Ra;Kang, Hye-Ju;Nam, Seong-Young;Kim, Chun-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.66-73
    • /
    • 2019
  • Approximately 80% of the mines are vacated or abandoned mines and are mostly left without suitable environmental treatment facilities. In the area around the abandoned mine site, problems such as drainage of acidic city drainage and leakage of leachate occur, and ground subsidence caused by this can cause a safety accident due to sink hole occurrence. In this study, flow, compressive strength, water uptake, pore and hydration characteristics were investigated to investigate the basic properties of liner and cover material based on the replacement ratio of nano silica and silica fume in the existing blast - furnace slag fine powder. As a result, as the substitution ratio of nano silica and silica fume increased, the flow and compressive strength of nano silica specimens increased and the absorption rate decreased. In the case of pore characteristics, the amount of pores decreased as the substitution ratio of nano silica and silica fume increased. Especially, the capillary porosity of 10-1,000 nm diameter decreased. Ray diffraction analysis and SEM measurement showed that the peak positions of the hydration products were almost the same when compared with the 5% alternative test samples of Plain and silica fume.

Development of in-situ Sintered Ni-Al Alloy Anode for Molten Carbonate Fuel Cell (용융탄산염 연료전지용 in-situ 소결된 Ni-Al 합금 연료극 개발)

  • Chun, H.A.;Yoon, S.P.;Han, J.;Nam, S.W.;Lim, T.H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.124-131
    • /
    • 2006
  • For commercialization of molten carbonate fuel cell (MCFC), it has some problems to be overcome such as decrease of porosity and thickness of the anode under the operating condition (at $650^{\circ}C$ and working pressure of more than 2 $kg_f/cm^2$). Recently, Ni-Al alloy anode has been proposed to replace the conventional Ni-Cr anode as an alternative material to resist a creep and inhibit the sintering. The objective of this research is to sinter the green sheet of Ni-Al alloy anode during single cell pre-treatment process, which has several advantages like cost down and simplification of manufacturing process. However, the Ni-Al alloy anode prepared with a conventional pre-treatment process showed the phase separation of Ni-Al alloy and formation of micropore(${\leqq}0.4{\mu}m$), resulting in low creep resistance and high electrolyte re-distribution. In order to prevent the Ni-Al alloy anode from phase-separating, nitrogen gas was used in the process of pre-treatment. Introducing the nitrogen, the phase separation from Ni-Al alloy into nickel and alumina was minimized and increased creep resistance. However, there was some micropore formation on the surface of Ni-Al alloy anode during the cell operation due to creation of lithium aluminate. Addition of more amount of electrolyte into a cell, especially at cathode, made the cell performance stable for 2,000 hrs. Consequently, it was possible to make the Ni-Al alloy anode with good creep resistance by the modified in-situ sintering technique.

재료 동적영향을 고려한 주냉각재 배관 LBB 적용시 Dynamic Strain Aging의 영향 분석

  • 양준석;박치용;정우태;유기완;김진원
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.305-311
    • /
    • 1998
  • 최근들어 고려된 LBB(Leak Before Break) 적용요건중 동적파괴시힘 절차에는 울진 3&4호기 이후 파단전누설개념이 적용되는 배관이 탄소강으로 제작될 경우. 이 배관이 Dynamic Strain Aging (DSA)에 의해 파괴저항치가 감소되지 않는다는 것이 정량적으로 입증되지 않는 한, 동 배관의 파괴 물성치 결정시 DSA의 영향이 고려되어야 하며, DSA 영향을 평가하기 위해서는 동적과괴시험이 수행되어야 함을 요건화 하고 있다. 본 연구에서는 DSA 효과에 의한 파괴저항(J-R) 특성의 저하가차세대원전 원자로냉각재배관 파단전누설개넘(LBB) 적용시 설계 안전여유도에 영향을 미치지 않는 정도임을 평가하는데 있다. 따라서 ASME Section III에서 탄소강으로 분류하고 있는 강종별 파괴인성 변화를 고찰하고, 차세대원전 주냉각재배관 재료인 SA508 Class la의 최대 파괴인성 감소치를 예측하여, 울진 3&4호기에서 측정된 엘보우용 SA516-Gr.70 강의 DSA 영향 평가 결과와 비교 분석하여 차세대원전 주냉각재배관의 DSA영향을 평가하였다. 도출된 결론으로는 DSA 영향을 고려한 SA508 Class la의 J 및 dJ/dA 값은 극히 보수적으로 추정할 때 50% 이상 감소하는 것으로 예측된다. 이러한 DSA 영향을 고려하였을 경우 배관재 모재의 파괴인성치는 Weld-SAW의 J/T 값 수준으로 감소하였다. 그러나 현 LRB 해석이 가장 낮은 J/T값을 갖는 Weld-SAW Auto의 균열길이 2a인 J/T선도에 의거하여 수행되고 있다는 점을 고려한다면 비록 DSA가 배관재에 영향을 주는 가장 보수적인 값(J 및 dJ/dA값을 50% 이상)을 사용한다고 하더라도 차세대원전 LBB 적용에 문제가 되지 않음을 알 수 있다. 즉 차세대원자로 주냉각재배관에 LBB를 적용하는데는 DSA 영향은 상대적으로 중요하지 않다는 결론을 얻었다. 표면에 수소화물이 농축되어 있는 hydride layer가 형성됨을 관찰하였으며 ~5,000ppm 이상의 경우에는 수소화물의 방향성이 random하였으며 특히, ZIRLO$^{TM}$ 시편의 경우에서는 원주방향으로 길게 이어진 수소화물과 기계적 성질에 치명적인 반경방향의 수소화물이 평행하게 배열된 것을 관찰하였다.하였을 때는 Li$_2$O의 첨가에 의해 치밀화가 주로 일어났고, 반면에 $N_2$-7vol.%H$_2$ 분위기에서 소결하면 Li$_2$O의 첨가에 의해 작은 기공은 소멸되고 큰 기공이 생성되었다.지나치게 모국어의 영향만 강조하고 다른 요인들에 대해서는 다분히 추상적인 언급으로 끝났지만 이 분석을 통 해서 배경어, 목표어, 특히 중간규칙의 역할이 괄목할 만한 것임을 가시적으로 관찰할 수 있 다. 이와 같은 오류분석 방법은 학습자의 모국어 및 관련 외국어의 음운규칙만 알면 어느 학습대상 외국어에라도 적용할 수 있는 보편성을 지니는 것으로 사료된다.없다. 그렇다면 겹의문사를 [-wh]의리를 지 닌 의문사의 병렬로 분석할 수 없다. 예를 들어 누구누구를 [주구-이-ν가] [누구누구-이- ν가]로부터 생성되었다고 볼 수 없다. 그러므로 [-wh] 겹의문사는 복수 의미를 지닐 수 없 다. 그러면 단수 의미는 어떻게 생성되는가\ulcorner 본 논문에서는 표면적 형태에도 불구하고 [-wh]의미의 겹의문사는 병렬적 관계의 합성어가 아니라 내부구조를 지니지 않은 단순한 단어(minimal $X^{0}$ elements)로 가정한다. 즉, [+wh] 의미의 겹의문사는 동일한 구성요 소를 지닌 병렬적 합성어([$[W1]_{XO-}$ $[W1]_{XO}$ ]$_{XO}$)로

  • PDF

Charge Storage Behavior of the Carbons Derived from Polyvinylidene Chloride-resin and Polyvinylidene Fluoride in Different pH Electrolytes (다른 pH의 전해질에서 polyvinylidene chloride-resin와 polyvinylidene fluoride로부터 합성된 다공성 탄소의 전하 저장 거동)

  • Sang-Eun, Chun
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.394-401
    • /
    • 2022
  • Two polymer precursors, polyvinylidene chloride-resin (PVDC-resin) and polyvinylidene fluoride (PVDF), are assembled into the microporous carbon by pyrolysis. Microporous carbon is advantageous as an electrode for supercapacitors that store electric charges through ion adsorption/desorption. The pyrolysis also turns the various heteroatoms of two precursors into functional groups, contributing to the additional charge storage. The analysis of the porous structure and function group during carbonization are important to develop the carbon for energy storage. Here, we analyzed the functional groups of two polymer-derived carbons through X-ray photoelectron spectroscopy. The electrochemical properties of the functional groups were explored in various pH electrolytes. The specific capacitance of two carbons in the acidic electrolyte (1 M H2SO4) was improved compared to that in the neutral electrolyte (0.5 M Na2SO4) due to the faradaic charge/discharge reaction of the quinone functional group. In particular, the carbon electrode derived from PVDC-resin exhibits a lower capacity than the carbon from PVDF due to the small micropores. In the alkaline electrolyte (6 M KOH), the highest specific capacitance and rate capability were obtained among the three electrolytes for both electrodes based on the facile adsorption of the constituent electrolyte ions (K+, OH-).