• Title/Summary/Keyword: 기공결함

Search Result 115, Processing Time 0.026 seconds

Solid Particle Erosion Behavior of Inconel 625 Thermal Spray Coating Layers (Inconel 625 열용사 코팅 층의 고상입자 침식 거동)

  • Park, Il-Cho;Han, Min-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.521-528
    • /
    • 2021
  • In this study, to repair damaged economizer fin tubes on ships, sealing treatment was performed after applying arc thermal spray coating technology using Inconel 625. A solid particle erosion (SPE) experiment was conducted according to ASTM G76-05 to evaluate the durability of the substrate, thermal spray coating (TSC), and thermal spray coating+sealing treatment (TSC+Sealing) specimens. The surface damage shape was observed using a scanning electron microscope and 3D laser microscope, and the durability was evaluated through the weight loss and surface roughness analysis. Consequently, the durability of the substrate was superior to that of TSC and TSC+Sealing, which was believed to be owing to numerous pore defects in the TSC layer. In addition, the mechanism of solid particle erosion damage was accompanied by plastic deformation and fatigue, which were the characteristics of ductile materials in the case of the substrate, and the tendency of brittle fracture in the case of TSC and TSC+Sealing was confirmed.

Microstructure, Defects and Mechanical Properties of DED Metal Deposited Heat-Resistant Mold Steel (내열 금형강 DED 금속적층재의 조직, 결함 및 기계적 물성 평가)

  • Choi, Sung-Jong;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.12-21
    • /
    • 2022
  • Directed energy deposition (DED) was adopted as a metal additive manufacturing method to develop a mold for the hot stamping process. The test piece was machined from Heatvar laminate material, and results were obtained through microstructure and defect observations, as well as hardness, tensile strength, and joint strength tests. 1) Spherical pores and irregular-shaped cavities were observed as lamination defects, and columnar dendrites formed in the structure, which tended to become coarse upon heat treatment. 2) The hardness of the heat-treated material (480HV) was slightly lower than that of the non-heat-treated material (500HV). 3) In the tensile test, the maximum tensile stress and strain of the heat-treated material were 1392 MPa and 15%, respectively, which were slightly higher than the values of 1381 MPa and 13%, respectively, for the non-heat-treated material. 4) In the case of the early final fracture in the tensile test, in most cases, pores or irregularly shaped cavities were observed at the fracture surface or near the surface. 5) In the joint strength test, most of the specimens finally fractured in the laminated metal area, and the fracture surface was intragranular. In addition, dimples formed over the entire area on the fracture surface of the fractured specimen after sufficient elongation.

A Study on Crack of Hydrogen Filling Pressure Vessel Using Finite Element Method (유한요소법을 이용한 수소충전용 압력용기의 균열에 관한 연구)

  • Ha Young Choi;Sung Kwang Byon;Seunghyun Cho
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.116-122
    • /
    • 2023
  • As the number of hydrogen filling stations for hydrogen supply increases with the progress of low-carbon eco-friendly energy policies, the risk of accidents is also increasing. Actual pressure vessels may have defects such as notches, pores, and inclusions that may occur during the manufacturing process. Therefore, it is necessary to evaluate the integrity of pressure vessels in the case where cracks exist in pressure vessels under internal pressure. In this paper, 3D finite element analysis was used to evaluate the structural safety of hydrogen-filled pressure vessels with surface cracks, and the shape of surface cracks was compared with the commonly used semi-elliptical shape. In the future, these results will be used to predict the remaining life of the pressure vessel in consideration of fracture mechanics.

Rheological and Debinding Properties of Al2O3/Paraffin Wax/High Density Polyethylen System Mixture by Injection Molding (사출성형에 의한 Al2O3/Paraffin Wax/High Density Polyethylen계 혼합물의 유동성 및 탈지 특성)

  • 김승겸;신대용;한상목;강위수
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.395-400
    • /
    • 2004
  • The effects of compositions of binders on the rheological properties of mixtures and the preparation conditions on the formation of defects and the debinding characteristics of compacts for the injection molding of ceramic powders (65 wt% aluminaㆍ35 wt% feldspar) were studied. Ceramic powders were coated with 2 wt% of stearic acid and then mixed with 15, 20, and 25 wt% of Paraffin Wax (PW) and High Density Polyethylene (HDPE) as binders at $160^{\circ}C$ for 2 h. Rheological properties were investigated by using capillary rheometer. Apparent viscosities of mixtures were 80∼300 Paㆍs at 1,000$s^{-1}$ of a shear rate, it was good for the injection molding and depending on the compositions of binders. Short shot was formed at 15H5P5 (the ratio of HDPE : PW=5 : 5 in 15 wt% of binders) compacts without injection pressures and any noticeable defects were not formed at 45 kgf/$cm^{2}$ in 20H5P5 compacts. PW and HDPE were removed by the solvent extraction and thermal debinding method. Thermal debinding of HDPE at $450^{\circ}C$ for 5 h, which followed the extraction of PW was using n-heptane solvent at $70^{\circ}C$ for 5 h. Continuous pores in compacts, which facilitate the removal of HDPE by the thermal debinding, were found to form in the compacts when PW was removed by the solvent extraction. The optimum composition of binder at which binder was removed by thermal debinding without defects while maintaining the compact strength was 20H5P5. Bulk density, porosity and 3-point bending strength of 20H5P5 compact sintered at 1,30$0^{\circ}C$ for 5 h were 2.8, < 3%, and 2,400 kgf/$cm^{2}$, respectively, and can be used as a structural materials.

Present Status of Soil Contamination Facilities (특정토양오염관리대상시설의 실태에 관한 고찰)

  • Kim, Ki-Ho;Park, Jae-Soo;Kim, Hae-Keum;Choi, Sang-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.287-292
    • /
    • 2012
  • This study was to build the database by collecting the results of legal leak test and self-test conducted by the owners of soil contamination facilities at soil-related specialized agency to grip objective status on soil contamination facilities and evaluate classification results. The results of the study showed that the unsuitable rate of business unit is 53.6%, the business with leak that could cause actual pollution is 25.7%, the unsuitable rate of the voluntary self-test is 57.3%, that of the compulsory inspection is 17.2% depending on the test motivation, that of the direct-test is 58.9%, and that of the indirect-test is 22.5% depending on the test methods. There was a significant difference between the test motivation conducted and the test methods applied. From the results of the unsuitable reasons obtained we could assume that about 20% of the whole target tanks became potential sources with natural defects occurred when such tanks were made, and 2.2% of the whole tankers examined that persisting period was caused by progressing corrosion below the minimum thickness.

Development of Mold for Coupling Parts for Drum Washing Machine (드럼세탁기용 커플링 부품 다이캐스팅 금형개발)

  • Park, Jong-Nam;Noh, Seung-Hee;Lee, Dong-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.482-489
    • /
    • 2020
  • This study conducted a prototype development and evaluation by performing die-casting mold design, mold manufacturing, and injection condition optimization based on flow and solidification analysis to meet the needs of the coupling parts produced by die casting. Through flow analysis, the injection conditions suitable for 100% filling in the cavity were found to be a molten metal temperature of 670 ℃, injection speed of 1.164 m/s, and filling pressure of 6.324~18.77 MPa. In addition, solidification close to 100 % occurred in all four cavities when the solidification rate was 69.47 %. A defect inspection on the surface and inside the product revealed defects, such as poor molding and pores. In addition, the dimensions of the injected product were within the target tolerance and showed good results. Through the feedback of the results of flow and solidification analysis, it was possible to optimize the mold design, and the injection optimization conditions were confirmed to be a total cycle time of approximately 6.5 seconds. Good quality carrier parts with an average surface hardness of approximately 45 mm from the gate measured at 97.48(Hv) could be produced.

Synthesis of Borosilicate Zeotypes by Steam-assisted Conversion Method (수증기 쪼임법에 의한 제올라이트형 보로실리케이트 제조방법)

  • Mansour, R.;Lafjah, M.;Djafri, F.;Bengueddach, A.
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.178-185
    • /
    • 2007
  • Intermediate pentasil borosilicate zeolite-like materials have been crystallized by a novel method named steam-assisted conversion, which involves vapor-phase transport of water. Indeed, amorphous powders obtained by drying Na2O.SiO2.B2O3.TBA2O gels of various compositions using different boron sources are transformed into crystalline borosilicate zeolite belonging to pentasil family structure by contact with vapors of water under hydrothermal conditions. Using a variant of this method, a new material which has an intermediate structure of MFI/MEL in the ratio 90:10 was crystallized. The results show that steam and sufficiently high pH in the reacting hydrous solid are necessary for the crystallization to proceed. Characterization of the products shows some specific structural aspects which may have its unique catalytic properties. X-ray diffraction patterns of these microporous crystalline borosilicates are subjected to investigation, then, it is shown that the product structure has good crystallinity and is interpreted in terms of regular stacking of pentasil layers correlated by inversion centers (MFI structure) but interrupted by faults consisting of mirror-related layers (MEL structure). The products are also characterized by nitrogen adsorption at 77 K that shows higher microporous volume (0.160 cc/g) than that of pure MFI phase (0.119 cc/g). The obtained materials revealed high surface area (~600 m2/g). The infrared spectrum reveals the presence of an absorption band at 900.75 cm-1 indicating the incorporation of boron in tetrahedral sites in the silicate matrix of the crystalline phase.

Study on the Restoration of Ancient Smelting and Smithing Technologies in the Jungwon Area (재현실험을 통한 중원지역 고대 제련-단야기술의 공정별 특성 연구)

  • Lee, Eunwoo;Kwak, Byeongmoon;Kim, Eunji;Han, Youngwoo;Park, Chonglyuck
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.519-532
    • /
    • 2017
  • Studies on ancient ironmaking technologies are primarily based on archaeological surveys and scientific analysis data, and technological systems are examined by comparing the results of restorative experiments. In this study, to examine the ancient iron production technologies such as smelting and smithing in the Jungwon area, a restoration experiment was conducted based on archaeological data, and the iron and slag, etc. produced in the experiment were analyzed. Further, the changes in physicochemical properties due to the smelting of the raw material, specifically, iron ore were determined, and the smithing process, which involves fabrication of ironwares, was analyzed along with the characteristics of each step. In the case of smelting, increasing recovery rates and production of high-quality primary iron material were important for the following processes. For the iron bars produced through the smithing process, it was found that quality improvements made by reducing physical defects such as inclusions or gas holes were more important than the composition of the iron itself. The study also yielded comparative study data for various byproducts, such as smithing slag, which could be utilized in other ironmaking technology studies.

A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication (팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구)

  • Hwang, Yong-Mook;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.458-464
    • /
    • 2006
  • The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.

Study on Physical and Chemical Properties of CaO-Al2O3 System Melting Compound (CaO-Al2O3계 용융화합물의 물리·화학적 특성에 관한 연구)

  • Lee, Keun-Jae;Koo, Ja-Sul;Kim, Jin-Man;Oh, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.209-215
    • /
    • 2013
  • This study is aimed to identify the method to use the CaO-$Al_2O_3$ system of rapidly cooled steel making slag (RCSS) as the environment-friendly inorganic accelerating agent by analyzing its physical and chemical properties. The fraction of rapidly cooled steel making slag is distinguished from its fibrous, and the contents of CaO and $Fe_2O_3$ are inversely proportional across different fractions. In addition, as the content of CaO decreased and the content of $Fe_2O_3$ increased, the loss ignition tended to become negative (-) and the density increased. The pore distribution by mercury intrusion porosimetry is very low as compared to the slowly cooled steel-making slag, which indicates that the internal defect and the microspore rate are remarkably lowered by the rapid cooling. To analyze the major minerals the rapidly cooled steel-making slag, XRD, f-CaO quantification and SEM-EDAX analysis have been performed. The results shows that f-CaO does not exist, and the components are mainly consisted of $C_{12}A_7$ and reactive ${\beta}-C_2S$.