• Title/Summary/Keyword: 기계-전기적 연성

Search Result 36, Processing Time 0.022 seconds

Mechanical Properties and Electrical Conductivities of In-Situ Cu-9Fe-1.2X(X=Ag, Cr, Co) Microcomposite Wires (Cu-9Fe-1.2X (X=Ag, Cr, Co)계 미세복합재료전선의 기계적 특성 및 전기전도도)

  • Song, Jae-Suk;Im, Mun-Su;An, Jang-Ho;Hong, Sun-Ik
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • In this study, microstructure and mechanical properties and electrical conductivities of in situ Cu-Fe-Xi(Xi=Ag, Cr or Co) alloy wires obtained by cold drawing combined with intermediate heat treatments have investigated. During cold working the primary and secondary dendrite arms are aligned along the drawing direction and elongated into filaments after deformation processing. The addition of Ag was found to be more effective in reducing the microstructural scale at the given draw ratio than that of Co or Cr throughout the drawing processing. The ultimate tensile strength and the conductivity of the Cu-Fe based composites containing Ag were higher than those of Cu-Fe composites containing Co or Cr. The good mechanical and electrical properties of Cu-Fe-Ag wires may be associated with the more uniform distribution of the finer filaments in the wires containing silver. The strength of Cu-Fe-Xi composites is dependent on the spacing of the Fe filaments in accord with a Hall-Petch relationship. The fracture surfaces of all the specimens showed ductile-type fracture and iron filaments occasionally observed on the fracture surfaces.

  • PDF

A study on the evaluation for material degradation of 0.0Cr-0.5Mo steel by a electrochemical polarization method (전기화학적 분극법에 의한 1.0Cr-0.5Mo강의 경년열화 평가에 관한 연구)

  • Na, Eui-Gyun;Kim, Hoon;Lee, Jong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.177-189
    • /
    • 1998
  • The contents of this paper include a non-destructive technique for evaluating the degradation of the boiler superheater tube in a fossil power plant through an electrochemical polarization test. Correlation between Ip of polarization parameter and SP-DBTT for the superheater tubes in long-term use was obtained. 1.0Cr-0.5Mo steel was degraded by softening, and the degree of degradation was dependent upon carbides with Cr and Mo elements. Since brittle fracture at low temperature and ductile fracture mode at high temperature were shown, similarity between standard Charpy and small punch tests could be found. In addition, SP-DBTT showing the degree of degradation was higher, as the time-in use of the materials got longer. Electrolyte including picric acid of 1.3 g in distilled water of 100ml at 25.deg. C temperature and sodium tridecylbenzene sulfonate with 1g could be applied to evaluate the degradation of 1.0Cr-0.5Mo steel by means of the electrochemical polarization test. Ip and Ipa values measured through the electrochemical test are the appropriate parameters for representing the degradation of the superheater tube(1.0Cr-0.5Mo steel) for the fossil power plant. It is poassible to evaluate the degradation of materials with different time histories electrochemically, by Ip value only, at field test.

Degradation Damage Evaluation of High Temperature Structural Components by Electrochemical Anodic Polarization Test (전기화학적 양극분극시험에 의한 고온 설비부재의 열화손상 평가)

  • Yu, Ho-Seon;Song, Mun-Sang;Song, Gi-Uk;Ryu, Dae-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1398-1407
    • /
    • 2000
  • The structural steels of power plant show the decrease of mechanical properties due to degradation such as temper embrittlement, creep damage and softening during long-term operation at high temper ature. The typical causes of material degradation damage are the creation and coarsening of carbides(M23C6, M6C) and the segregation of impurities(P, Sb and Sn) to grain boundary. It is also well known that material degradation induces the cleavage fracture and increases the ductile-brittle transition temperature of steels. So, it is very important to evaluate degradation damage to secure the reliable and efficient service condition and to prevent brittle failure in service. However, it would not be appropriate to sample a large test piece from in-service components. Therefore, it is necessary to develop a couple of new approaches to the non-destructive estimation technique which may be applicable to assessing the material degradation of the components with not to influence their essential strength. The purpose of this study is to propose and establish a new electrochemical technique for non-destructive evaluation of material degradation damage for Cr-Mo steels which is widely used in the high temperature structural components. And the electrochemical anodic polarization test results are compared with those of semi-nondestructive SP test.

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique Part 2 : Effect of Testing Conditions on Evaluation Value of Degradation Degree and Changes of Mechaical Properties (전기화학적 방법에 의한 내열강의 열화도측정 제2보 : 열화도측정치에 미치는 측정조건들의 영향과 기계적성질 변화에 대해서)

  • 정희돈;권영각;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.300-312
    • /
    • 1993
  • The material deterioration of service-exposed boiler tube steels in fossil power plant was evaluated by using the electrochemical technique namely, modified electrochemical potentiokinetic reactivation(EPR). It was focused that the passivation of Mo$_{6}$C carbide which governs the mechanical properties of Mo alloyed steels did not occur even in the passivity region of steel in sodium molybdate solution and the reactivation peak current (Ip) observed as the result of non-passivation indicating the precipitation of Mo$_{6}$C carbides. To obtain the optimal test conditions for the field test by using the specially designed electrochemical cell, the effects of scan rate, the surface roughness and the pH of electrolyte on Ip value were also investigated. Furthermore, the change of mechanical properties occurred during the long time exposure at high temperature was evlauated quantitatively by small punch(SP) tests and micro hardness test taking account of the metallurgical changes. It is known that reactivation peak current (Ip) has a good relationship with Larson-Miller Parameter(LMP) which represents the information about material deterioration occurred at high temperature environment. In addition it was possible to estimate the ductile-brittle transition temperature (DBTT) by means of the SP test. The Sp test could be, therefore, suggested as a reliable test method for evaluating the material degradation of boiler tube steels. From the good correaltion between the SP DBTT and Ip values shown in this study, it was knows that the change of mechanical properties could be evaluated non-destructively by measurring only Ip values.ues.

Recent Research Trend in Nanocomposite Hydrogel Actuators (나노복합 하이드로겔 액추에이터의 연구동향)

  • Chung, Taehun;Han, Im Kyung;Kim, Youn Soo
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.2
    • /
    • pp.40-50
    • /
    • 2020
  • 소프트 로봇의 수요와 관심이 증가함에 따라 생체 모방형 액추에이터 연구가 큰 관심을 받고 있다. 액추에이터란 외부 에너지를 기계적인 동작으로 변환하는 장치이며, 재료 자체가 유연하여 부드러운 움직임을 재현할 수 있는 소프트 액추에이터의 연구가 활발히 진행되고 있다. 고분자 연성 재료 중에 하나인 하이드로겔은 90% 이상이 물로 구성되어 있기 때문에 생체 친화적이면서 동시에 환경 친화적인 재료이며 이를 기반으로 한 액추에이터 연구가 새로이 각광받고 있다. 최근에는 하이드로겔 액추에이터의 성능 향상을 위해 나노재료를 하이드로겔에 첨가하는 연구가 진행되고 있으며, 나노재료가 갖는 고유의 특성을 활용함으로써 하이드로겔 액추에이터의 자극 감응성 향상, 변형 방향의 제어, 높은 변형 효율 그리고 기계적 물성 증가가 보고되고 있다. 이는 헬스케어를 위한 웨어러블 장치, 재활을 목적으로 한 인공 근육 등에 적용이 가능하다. 본 기고문에서는 자극 감응성 고분자와 나노재료를 이용한 하이드로겔 액추에이터 연구에 대해 자극(전기장, 빛, 열, 자기장)의 종류에 따라 분류하여 소개하고, 합성 전략 및 구동 원리에 대해 간략하게 설명하고자 한다.

A Study of Fluid Structure Interaction Analysis and Coating Characteristics of a Two-stage Pressure Reduction Hydrogen Regulator (2단 감압 수소레귤레이터의 연성해석 및 도금특성에 관한 연구)

  • Song, Jae-Wook;KIM, Seung-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2021
  • In this study, shape design and material selection were carried out for a two-stage pressure-reducing regulator to compensate for the shortcomings of a one-stage mechanical decompression regulator. The shape of the contact surface of the depressurization unit was considered, material was selected, and the shape was designed to compensate for the pulsation and slow response through the two-stage decompression and to solve the problem of high pressure deviation. In terms of airtightness, the deformation amount of TPU showed a small amount of displacement of up to 15.82%. Considering the fact that it is applicable to various hydrogen fuel supply systems by securing universality by applying electronic solenoids to the second pressure reduction, magnetic materials were selected. The hydrogen embrittlement and corrosion resistance were evaluated to verify the plating process. Surface corrosion did not occur in only the case of Cr plating. The elongation during the corrosion process was compared using a tensile test, and there was a difference within 2%.

Papers : Three - dimensional assumed strain solid element for piezoelectric actuator/sensor analysis (3 차원 가정변형률 솔리드 요소를 이용한 압전 작동기/감지기 해석)

  • Jo, Byeong-Chan;Lee, Sang-Gi;Park, Hun-Cheol;Yun, Gwang-Jun;Gu, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • The paper deals with a fully assumed strain soild element that can be used for modeling of thin sensors and actuators. To solve fully coupled field problems, the eledtric potential is regarded as a nodal degree of freedom in addition to three translations in an eighteen node assumed strain soild element. Therefore, the induced electric potential can be calculated for a prescribed load and the actuation displacement can be computed for an input voltage. Since the assumed strain solid element can alleviate locking. A finite element code is developed based on the formulation and typical numerical examples are solved for code validation. Using the code, we have conducted parametric study for THUNDER actuator. It is found that a particular combination of materials for layer curvature of THUNDER improves the actuation displacement.

Mechanical and Electrical Properties of Impact Polypropylene Ternary Blends for High-Voltage Power Cable Insulation Applications (고전압 전력케이블 절연체 응용을 위한 임팩트 폴리프로필렌 기반 3성분계 블렌드의 기계적 및 전기적 특성에 대한 연구)

  • Lee, Seong Hwan;Kim, Do-Kyun;Hong, Shin-Ki;Han, Jin Ah;Han, Se Won;Lee, Dae Ho;Yu, Seunggun
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.127-133
    • /
    • 2022
  • Polypropylene (PP) has been received great attention as a next-generation high-voltage power cable insulation material that can replace cross-linked polyethylene (XLPE). However, the PP cannot be used alone as an insulation material because of its high elastic modulus and vulnerability to impact, and thus is mainly utilized as a form of a copolymer with rubber phases included in the polymerization step. In this paper, a soft PP-based blend was prepared through melt-mixing of impact PP, polyolefin elastomer, and propylene-ethylene random copolymer. The elastic modulus and impact strength of the blend could properly be decreased or increased, respectively, by introducing elastomeric phases. Furthermore, the blends showed a high storage modulus even at a temperature of 100℃ or higher at which the XLPE loses its mechanical properties. In addition, the blend was found to be effective in suppressing the space charge compared to the pristine PP as well as XLPE.

Finite Element Modeling for the Analysis of In- and Out-of-plane Bulk Elastic Wave Propagation in Piezoelectric Band Gap Structures (압전 밴드 갭 구조물의 면내·외 방향 체적 탄성파 전파 특성 해석을 위한 유한요소 모델링)

  • Kim, Jae-Eun;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.957-964
    • /
    • 2011
  • This investigation presents a finite element method to obtain the transmission properties of bulk elastic waves in piezoelectric band gap structures(phonon crystals) for varying frequencies and modes. To this end, periodic boundary conditions are imposed on a three-dimensional model while both in-plane and out-of-plane modes are included. In particular, the mode decoupling characteristics between in-plane and out-of-plane modes are identified for each electric poling direction and the results are incorporated in the finite element modeling. Through numerical simulations, the proposed modeling method was found to be a useful, effective one for analyzing the wave characteristics of various types of piezoelectric phononic band gap structures.

Estimation of Strain for Large Deformation in SMA-textile Actuator Using Nonlinear Geometry Analysis (비선형 기하해석을 이용한 SMA 섬유 액츄에이터의 대변형에 대한 변형률 추정)

  • Muhammad Umar Elahi;Jaehyun Jung;Salman Khalid;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.259-265
    • /
    • 2024
  • Shape memory alloy (SMA)-textile actuators have attracted significant attention across various fields, including soft robotics and wearable technology. These smooth actuators are developed by combining SMA and simple textile fibers and then knitting them into two loop patterns known as the knit (K-loop) and plain (P-loop) patterns. Both loops are distinguished by opposite bending characteristics owing to loop head geometry. However, the knitting processes for these actuator sheets require expertise and time, resulting in high production costs for knitted loop actuation sheets. This study introduces a novel method by which to assess the strain in SMA textile-based actuators, which experience large deformations when subjected to voltage. Owing to the highly nonlinear constitutive equations of the SMA material, developing an analytical model for numerical analysis is challenging. Therefore, this study employs a novel approach that utilizes a linear constitutive equation to analyze large deformations in SMA material with nonlinear geometry considerations. The user-defined material (UMAT) subroutine integrates the linear constitutive equation into the ABAQUS software suite. This equivalent unit cell (EUC) model is validated by comparing the experimental bending actuation results of K-loops and P-loops.