• Title/Summary/Keyword: 기계 번역

Search Result 416, Processing Time 0.031 seconds

Verification of the Domain Specialized Automatic Post Editing Model (도메인 특화 기계번역 사후교정 모델 검증 연구)

  • Moon, Hyeonseok;Park, Chanjun;Seo, Jaehyeong;Eo, Sugyeong;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.3-8
    • /
    • 2021
  • 인공지능 기술이 발달함에 따라 기계번역 기술도 많은 진보를 이루었지만 여전히 기계번역을 통한 번역문 내에는 사람이 교정해야 하는 오류가 다수 포함되어있다. 이렇게 번역 모델에서 생성되는 오류를 교정하는 전문인력의 요구를 경감시키기 위하여 기계번역 사후교정 연구가 등장하였고, 해당 연구는 현재 WMT를 주축으로 활발하게 연구되고 있다. 이러한 사후교정 연구는 최근 도메인 특화 관점에서 주로 연구가 이루어지고 있으며 현재 많은 도메인에서 유의미한 성과를 내고 있다. 하지만 이런 연구들은 기존 번역문의 품질을 얼만큼 향상시켰는가에 초점을 맞출 뿐, 다른 도메인 특화 번역모델의 성능과 비교했을 때 얼마나 뛰어난지는 밝히지 않기 때문에 사후교정 연구가 도메인 특화에서 효과적으로 작용하는지 명확하게 알 수 없다. 이에 본 연구에서는 도메인 특화 번역 모델과 도메인 특화 사후교정 모델간의 성능을 비교함으로써, 도메인 특화에서 사후교정을 통해 얻을 수 있는 실제적인 성능을 검증한다. 이를 통해 사후교정이 도메인 특화 번역모델과 비교했을 때 미미한 수준의 성능을 보임을 실험적으로 확인하였고, 해당 실험 결과를 분석함으로써 향후 도메인특화 사후교정 연구의 방향을 제안하였다.

  • PDF

A Transformation based Sentence Splitting method for Statistical Machine Translation (통계적 기계번역을 위한 변환 기반 문장 분할 방법)

  • Lee, Jongoon;Lee, Donghyeon;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.276-281
    • /
    • 2007
  • 최근 활발하게 연구 되고 있는 통계 기반의 기계 번역 시스템에서는 입력 문장이 길어지면 번역 성능이 떨어지는 현상이 나타난다. 이를 완화하기 위해 긴 문장을 같은 의미의 짧은 문장들로 분할하여 각각 번역하면 기계 번역 성능을 향상 시킬 수 있다. 본 논문에서는 통계적 기계 번역을 위한 변환 기반의 문장 분할 방법을 제안한다. 변환 기반의 문장 분할 방법은 사람이 직접 분할한 예문으로부터 변환 규칙을 학습하여 기계 번역의 입력 문장에 적용함으로써 구절 기반의 통계적 기계 번역 성능을 최대화 한다.

  • PDF

A Linguistic Evaluation of English-to-Korean Translation - Centered on Machine Translation - (영한 번역의 언어학적 평가 모델 연구 - 기계번역을 중심으로 -)

  • 김덕봉;조병은;김명철;권용현
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.4
    • /
    • pp.11-27
    • /
    • 2001
  • Machine translation (MT) quality assessment is an outstanding problem. In the present situation in which the quality of machine-translated products are far from the user\\`s satisfaction objective evaluation of MT system is a prerequisite to building mutual trust between the users and the vendors stimulating constructive competition among the developers and finally leading to improve the quality of MT systems. Especially there emerges a need for an intensive study on how to evaluate the quality of MT systems from both linguistic and data processing aspects and to secure a steady improvement of the translation quality. With due regard to such points we in this paper present a linguistic evaluation of English-to-Korean machine translation based on a test suite composed of 3.373 sentences that were classified into their linguistic phenomena and complexity levels and report the experimental results made from several commercial MT systems.

  • PDF

Expanding Korean/English Parallel Corpora using Back-translation for Neural Machine Translation (신경망 기반 기계 번역을 위한 역-번역을 이용한 한영 병렬 코퍼스 확장)

  • Xu, Guanghao;Ko, Youngjoong;Seo, Jungyun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.470-473
    • /
    • 2018
  • 최근 제안된 순환 신경망 기반 Encoder-Decoder 모델은 기계번역에서 좋은 성능을 보인다. 하지만 이는 대량의 병렬 코퍼스를 전제로 하며 병렬 코퍼스가 소량일 경우 데이터 희소성 문제가 발생하며 번역의 품질은 다소 제한적이다. 본 논문에서는 기계번역의 이러한 문제를 해결하기 위하여 단일-언어(Monolingual) 데이터를 학습과정에 사용하였다. 즉, 역-번역(Back-translation)을 이용하여 단일-언어 데이터를 가상 병렬(Pseudo Parallel) 데이터로 변환하는 방식으로 기존 병렬 코퍼스를 확장하여 번역 모델을 학습시켰다. 역-번역 방법을 이용하여 영-한 번역 실험을 수행한 결과 +0.48 BLEU 점수의 성능 향상을 보였다.

  • PDF

French-Korean Computer-Assisted Translation Workbench, TransFranCo (불-한 전문분야 기계보조번역 워크벤치 TransFranCo)

  • Jeong, Hwi-Woong;Lim, Yong-Seok;Yoon, Ae-Sun
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.255-260
    • /
    • 2005
  • 번역 메모리(Translation Memory)는 오늘날 기계번역에 있어 통계기반 접근법이나 형태-통사적 접근법 모두에 있어 가장 중요한 요소로 평가되고 있다. 그러나 번역 메모리는 언어의 자질 및 각 용례를 통합적으로 관리해야 하며, 이를 기계가 자동으로 처리해주어야 하는 어려움이 있다. 최근에는 이러한 문제점을 해결하기 위해 다국적 기업을 중심으로 기계보조번역(Computer Aided Translation) 환경에 대한 연구가 활발히 이루어지고 있으나, 언어적인 특성 보다는 번역 메모리의 저장/대치적 측면에서 주요 연구가 이루어지고 있다. 이 논문에서는 번역 메모리 정보가 보다 높은 재사용성을 보이기 위해서는 다양한 언어자질값을 담을 수 있어야 한다고 보고, 이를 효율적으로 관리/구축할 수 있는 기계보조번역 워크벤치의 framework을 제시한다. 언어분석을 위한 대상언어로는 교역 및 기술 측면에서 영어, 일어, 중국어 다음으로 영향력이 높은 불어를 채택하며, 기존 기계보조번역 방식에 대한 고찰을 통해 개선된 번역 메모리 관리, 자동분석/번역 모듈 및 협업(collaboration) 방안에 대해 소개하고, 향후 발전방향에 대해 논의한다.

  • PDF

English-Korean Neural Machine Translation using MASS (MASS를 이용한 영어-한국어 신경망 기계 번역)

  • Jung, Young-Jun;Park, Cheon-Eum;Lee, Chang-Ki;Kim, Jun-Seok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.236-238
    • /
    • 2019
  • 신경망 기계 번역(Neural Machine Translation)은 주로 지도 학습(Supervised learning)을 이용한 End-to-end 방식의 연구가 이루어지고 있다. 그러나 지도 학습 방법은 데이터가 부족한 경우에는 낮은 성능을 보이기 때문에 BERT와 같은 대량의 단일 언어 데이터로 사전학습(Pre-training)을 한 후에 미세조정(Finetuning)을 하는 Transfer learning 방법이 자연어 처리 분야에서 주로 연구되고 있다. 최근에 발표된 MASS 모델은 언어 생성 작업을 위한 사전학습 방법을 통해 기계 번역과 문서 요약에서 높은 성능을 보였다. 본 논문에서는 영어-한국어 기계 번역 성능 향상을 위해 MASS 모델을 신경망 기계 번역에 적용하였다. 실험 결과 MASS 모델을 이용한 영어-한국어 기계 번역 모델의 성능이 기존 모델들보다 좋은 성능을 보였다.

  • PDF

통계적 기계 번역 기술의 연구 동향

  • 김선호;윤준태;임해창
    • Korea Information Processing Society Review
    • /
    • v.11 no.2
    • /
    • pp.76-87
    • /
    • 2004
  • 기계번역은 자연어 처리 및 인공지능 분야에서 가장 어려 운 태스크 중의 하나로 인식되어 왔다. 이는 정확한 번역이란 텍스트에 대한 이해 없이는 불가능하기 때문이다. 그러한 이유로 연구자들은 한때 기계번역에 대한 부정적인 결론에 도달하기도 하였다. 지금까지 기계번역을 위해 다양한 방법이 연구되어 왔으며 이들 연구에서는 주로 두 언어에 대한어휘나 구의 대역사전, 숙어사전, 개별 언어의 문법, 혹은 변환규칙 및 변환사전, 문장생성에 관련된 지식, 의미나 실세계 지식, 도메인에 적합한 지식 등 번역의 방식과 목적에 따라 다양한 형태의 지식과 알고리즘이 적용되었으며 그 대부분은 방대한 양의 수작업에 의존적이었다.(중략)

  • PDF

A Study on the Performance Improvement of Machine Translation Using Public Korean-English Parallel Corpus (공공 한영 병렬 말뭉치를 이용한 기계번역 성능 향상 연구)

  • Park, Chanjun;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.271-277
    • /
    • 2020
  • Machine translation refers to software that translates a source language into a target language, and has been actively researching Neural Machine Translation through rule-based and statistical-based machine translation. One of the important factors in the Neural Machine Translation is to extract high quality parallel corpus, which has not been easy to find high quality parallel corpus of Korean language pairs. Recently, the AI HUB of the National Information Society Agency(NIA) unveiled a high-quality 1.6 million sentences Korean-English parallel corpus. This paper attempts to verify the quality of each data through performance comparison with the data published by AI Hub and OpenSubtitles, the most popular Korean-English parallel corpus. As test data, objectivity was secured by using test set published by IWSLT, official test set for Korean-English machine translation. Experimental results show better performance than the existing papers tested with the same test set, and this shows the importance of high quality data.

Design Neural Machine Translation Model Combining External Symbolic Knowledge (심볼릭 지식 정보를 결합한 뉴럴기계번역 모델 설계)

  • Eo, Sugyeong;Park, Chanjun;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.529-534
    • /
    • 2020
  • 인공신경망 기반 기계번역(Neural Machine Translation, NMT)이란 딥러닝(Deep learning)을 이용하여 출발 언어의 문장을 도착 언어 문장으로 번역해주는 시스템을 일컫는다. NMT는 종단간 학습(end-to-end learning)을 이용하여 기존 기계번역 방법론의 성능을 앞지르며 기계번역의 주요 방법론으로 자리잡게 됐다. 이러한 발전에도 불구하고 여전히 개체(entity), 또는 전문 용어(terminological expressions)의 번역은 미해결 과제로 남아있다. 개체나 전문 용어는 대부분 명사로 구성되는데 문장 내 명사는 주체, 객체 등의 역할을 하는 중요한 요소이므로 이들의 정확한 번역이 문장 전체의 번역 성능 향상으로 이어질 수 있다. 따라서 본 논문에서는 지식그래프(Knowledge Graph)를 이용하여 심볼릭 지식을 NMT와 결합한 뉴럴심볼릭 방법론을 제안한다. 또한 지식그래프를 활용하여 NMT의 성능을 높인 선행 연구 방법론을 한영 기계번역에 이용할 수 있도록 구조를 설계한다.

  • PDF

Critical Error Span Detection Model of Korean Machine Translation (한국어 기계 번역에서의 품질 검증을 위한 치명적인 오류 범위 탐지 모델)

  • Dahyun Jung;Seungyoon Lee;Sugyeong Eo;Chanjun Park;Jaewook Lee;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.80-85
    • /
    • 2023
  • 기계 번역에서 품질 검증은 정답 문장 없이 기계 번역 시스템에서 생성된 번역의 품질을 자동으로 추정하는 것을 목표로 한다. 일반적으로 이 작업은 상용화된 기계 번역 시스템에서 후처리 모듈 역할을 하여 사용자에게 잠재적인 번역 오류를 경고한다. 품질 검증의 하위 작업인 치명적인 오류 탐지는 번역의 오류 중에서도 정치, 경제, 사회적으로 문제를 일으킬 수 있을 만큼 심각한 오류를 찾는 것을 목표로 한다. 본 논문은 치명적인 오류의 유무를 분류하는 것을 넘어 문장에서 치명적인 오류가 존재하는 부분을 제시하기 위한 새로운 데이터셋과 모델을 제안한다. 이 데이터셋은 거대 언어 모델을 활용하는 구축 방식을 채택하여 오류의 구체적인 범위를 표시한다. 또한, 우리는 우리의 데이터를 효과적으로 활용할 수 있는 다중 작업 학습 모델을 제시하여 오류 범위 탐지에서 뛰어난 성능을 입증한다. 추가적으로 언어 모델을 활용하여 번역 오류를 삽입하는 데이터 증강 방법을 통해 보다 향상된 성능을 제시한다. 우리의 연구는 기계 번역의 품질을 향상시키고 치명적인 오류를 줄이는 실질적인 해결책을 제공할 것이다.

  • PDF