• Title/Summary/Keyword: 급.배기구 위치

Search Result 10, Processing Time 0.025 seconds

A Study on the Ventilation Conditions for the Prevention of Spontaneous Combustion of Small Ship Engine Room (소형선박 기관실의 자연발화 방지를 위한 환기조건에 관한 연구)

  • Park, Chan-Su
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2008
  • In order to show the most suitable ventilation conditions for the prevention of spontaneous combustion of small ship engine room, We have performed CFD simulation and analyzed flow and temperature fields. The flow patterns indicated differently according to the number and location of supply and exhaust opening. The case of locating the exhaust openings at the center of left and right side ceiling to the longitudinal symmetric line were more effective to eliminate the generated heat. When the number of supply and exhaust openings were increased, the case of increasing the number of exhaust opening showed more suitable ventilation conditions. The most suitable ventilation conditions in order to prevent the spontaneous combustion of small ship engine room was predicted that the supply opening located at the center of front and after side ceiling to across symmetric line, and the exhaust opening located at the center of both side walls.

Evaluation of Ventilation Performances for Various Combinations of Inlets and Outlets in a Residential Unit through CO2 Tracer-Gas Concentration Decay Method (CO2 추적가스 농도감소법을 이용한 공동주택의 급·배기구 조합에 따른 환기 성능 분석)

  • Sang Yoon Lee;Soo Man Lee;Jong Yeob Kim;Gil Tae Kim;Byung Chang Kwag
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.111-120
    • /
    • 2023
  • Indoor air quality has become increasingly important with the increase in time spent in residential environments, impact of external fine dust, yellow dust, and the post-COVID 19 pandemic. Residential mechanical ventilation plays a key role in addressing indoor air quality. The legal standard for residential air changes per hour in Korea is 0.5 ACH. However, there are no standards for the location of supply and return vents. This study atempts to analyze the impact of ventilation performance based on the location of supply and return vents. An experiment was conducted using the CO2 tracer gas concentration decay method in a mock-up house set inside a large chamber to minimize external influences. The experimental results indicated that the commonly used combination of 2 supply and 2 return vents in living room spaces had a lower mean age of air than the combination of 1 supply and 2 return vents. Using multiple supply and return vents had lower mean age of air than using just 1 supply and 1 return vent.

Experimental Study on Ventilation Efficiency of Leakage Gas Based on Supply and Exhaust Vent Location (밀폐공간에서 급·배기구 위치에 따른 누출 가스의 환기효과에 관한 실험적 연구)

  • Ha-Young Kim;Seong-Min Lee;Byeol Kim;Kwang-Il Hwang
    • Journal of Navigation and Port Research
    • /
    • v.48 no.4
    • /
    • pp.274-283
    • /
    • 2024
  • Climate change is currently one of the most pressing environmental issues, primarily caused by carbon emissions from fossil fuel usage. As a result, alternative fuels that effectively reduce carbon emissions are garnering more attention. Among these alternatives, hydrogen has numerous advantages, such as its ability for large-scale storage and transport. However, it is crucial to prioritize safety measures, particularly in facilities that handle hydrogen, due to its highly flammable and fast-spreading nature. This study aims to compare and analyze the placement of supply and exhaust vents to efficiently release hydrogen in the event of a leak in an enclosed space. The experiments involved six different scenarios, each with various combinations of supply and exhaust vents. To ensure the experimental process's safety, helium, which shares similar physical properties with hydrogen, was used to analyze the internal oxygen concentration during ventilation system operations. The results revealed that among the six scenarios, Case 2, which employed a lower side supply vent and an upper side exhaust vent, exhibited the shortest ventilation time of 4 minutes and 30 seconds. Additionally, the decrease rate in oxygen concentration was examined in the upper, middle, and lower areas. Ventilation utilizing an upper surface supply vent and two exhaust vents on the upper surface and upper side (Case 6), showed lower oxygen concentration values in the upper area, while Case 2 yielded lower values in the middle and lower areas. Therefore, it is crucial to select an appropriate supply and exhaust vent configuration considering the space's characteristics and usage environment.

A study on the Improvement of Ventilation Performance in Apartment House According to the Location of Exterior Air-Vents (공동주택에서의 실외 급.배기구 위치에 따른 환기효율 향상 연구)

  • Park, Jin-Chul;Yu, Hyung-Kyu;Cha, Jin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.71-79
    • /
    • 2005
  • In this study, the ventilation performance of mechanical ventilation system in apartment House was analyzed through model test according to characteristics of air-vent. Then adequate interval of air-vent was suggested using computer simulation which will create comfort environment through improvement of ventilation performance in apartment house. The result of experiment with separation plate to prevent mixture of contaminated exhaust air with fresh supply air, the ventilation efficiency improved about 10%. The result of simulation with horizontal location of exterior air-vent, contaminated exhaust air is mixed regardless of interval variation. Consequently, mixture of the exhaust air can be prevented through locating the supply air vent on the top side and exhaust air vent on the lower side.

A Study on the Indoor Airflow Pattern by Changing the Location of Mechanical Terminal Unit (실내 급.배기구 위치변화에 따른 실 공기유동에 관한 연구)

  • Choi, Jeong-Min;Cho, Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2009
  • The ventilation system of apartments can be divided by supply and exhaust fan, supply fan and exhaust free and supply free and exhaust fan. Recently, the individual ventilation system and central ventilation system which is combined cooling system with duct system are applied to apartment ventilation system. The airflow pattern is affected by location of supply unit and exhaust unit in indoor. This study is to investigate the proper distance between supply unit and exhaust unit using CFD. As a result of this study, the proper distance between supply unit and exhaust unit could be suggested at the interval of 3 m in supply and exhaust fan system and 2.5 m in supply fan and exhaust free.

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.

Estimation on locations of air-supply and exhaust ports in the nacelle of wind turbine (풍력터빈 나셀 냉각시스템의 급.배기 위치 평가)

  • Woo, S.W.;Kim, H.T.;Lee, J.H.;Lee, K.H.;Park, J.P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.240-242
    • /
    • 2011
  • Wind power system is generally divided into the onshore wind turbine and the offshore wind turbine according to site locations. The offshore wind turbine is manufactured as a closed nacelle cooling system including a heat exchanger to prevent corrosion, but the onshore wind turbine is manufactured as open nacelle cooling system dependent on only the outdoor air without a heat exchanger. The indoor of a nacelle which is composed of a generator, foil power converters and a gearbox with a lot of heat is very narrow and airtight. This aim of the study is to demonstrate the temperature effect depending on positions of air-supply and exhaust ports. And this study discusses the flow field and removal efficiency of heat caused by components.

  • PDF

Evaluation of the location of the Outlets according to the Analysis of Ventilation conditions (환기상태 분석에 따른 급 배기구 위치 평가)

  • Moon, Yong-Jun;Kim, Hyouk-Soon;Kwak, Myong-Keun;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1207-1212
    • /
    • 2008
  • The purpose of this study is to evaluate the location of the outlets in the mechanical ventilation system installed in apartment. We performed the numerical analysis to estimate the ventilation effectiveness and the indoor $CO_2$ concentration considering the occupants and the condition with inlet and outlet in each room. From the numerical results, modified location of the outlets is about 10% high than designed one with respect to the ventilation effectiveness when the occupants are not considered. But designed location of inlet and outlet in living room and kitchen is better than modified one with respect to the reduction of $CO_2$ concentration in the living room and kitchen with occupants. In case of our model, Air change per hour (0.7) is not enough to sustain the acceptable criteria of $CO_2$ concentration (1000ppm) in the room with the occupants

  • PDF

An Experimental Study on the Ventilation performance in a Test Chamber and Office Room (모형실과 실공간에서의 환기성능에 관한 실험적 연구)

  • Yoon, Suk-Goo;Ku, Jae-Hyun;Yun, Ok-Chun;Han, Jung-Gun;Lee, Jae-Keum;Cho, Min-Chul;Kang, Tae-Wook;Lee, Kam-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.520-525
    • /
    • 2000
  • This research is to analyze the ventilation performance of mechanical ventilation systems for indoor air quality control and management. A ventilation performance with supply sites is evaluated in a test model chamber and office room. A $CO_2$ gas as a tracer gas is used to measure the ventilation performance. The ventilation performance is found to increase with increased the ventilation rate. The ventilation performance is analysed with 55% at the supply air of 570 lpm and with 20% at the supply air of 100 lpm in a test chamber. The ventilation performance is better than 15% comparing with natural decay at the supply of 570 lpm in office room.

  • PDF