• Title/Summary/Keyword: 금형 변형

Search Result 216, Processing Time 0.023 seconds

A Study on the Deformation Behavior of Material by V-Ring in Fine Blanking Process (파인블랭킹 공정에서 V-링에 의한 재료의 변형 거동에 관한 연구)

  • Lee, Chun-Kyu;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.46-50
    • /
    • 2017
  • Press processing is one of the best machining methods capable of mass production, satisfying dimensional, shape and quality among the methods of processing a metal plate. Among them, Fine blanking is a method of obtaining a precise cross-section such as machining of the shear surface shape. In this research, Using SCP-1 and SHP-1 materials. The deformation behaviors of the material flow affecting the die height of the shear section in accordance with the position of the V-ring in the Fine blanking were compared and analyzed. Result of interpretation, It was confirmed that the force acts on the position where the material flow direction accurately forms the die roll that the material of SCP-1 is at a position of 1.5 mm and the material of SHP-1 is at 2.0 mm. As a result, it was confirmed that the state of fo1111ing the shear surface by the V-ring was excellent. Using analysis results, In the experiment, the height of the die roll was considered by applying The position of the V-ring was 1.5 mm in SCP-1 and 2.0 mm in SHP-1. As a result of comparing the height of the die rolls, the height values of the die rolls were different from each other, It has been considered that the tendency of the die rolls to coincide with each other. It is considered that the difference of the die roll height is caused by the pressure input of the V-ring. In this study, the deformation behavior of the material(In addition to the position of the V-ring, the flow direction of the material depends on the shape of the V-ring and the Indentation amount) is considered to be an important factor in determining die roll height.

3-Dimensional Finite Element Analysis of Thermoforming Processes (열성형공정의 3차원 유한요소해석)

  • G.J. Nam;D.S. Son;Lee, J.W.
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.18-27
    • /
    • 1999
  • Predicting the deformation behaviors of sheets in thermoforming processes has been a daunting challenge due to the strong nonlinearities arising from very large deformations, mold-polymer contact condition and hyperelasticity constitutive equations. Nonlinear numerical analysis is always required to face this challenge especially for realistic processing conditions. In this study a 3-D algorithm and the membrane approximation are developed for thermoforming processes. The constitutive equation is expressed in terms of the 2nd Piola-Kirchhoff stress tensor and the Cauchy-Green deformation tensor. The 2-term Mooney-Rivlin model is used for the material model equation. The algorithm is established by the finite element formulation employing the total Lagrangian coordinate. The deformation behavior and the stress distribution results of 3-D algorithm with various point boundary conditions are compared to those of the membrane approximation algorithm. Also, the slip boundary condition and the no-slip boundary condition are applied for the systems that have molds. Finally, the effect of sheet temperatures on the final thickness distribution is investigated for the ABS material.

  • PDF

Estimation of the Thickness and the Material Combination of the Thermal Stress Control Layer (TSCL) for the Stellite21 Hardfaced STD61 Hot Working Tool Steel Using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 Stellite21 초합금으로 하드페이싱된 STD 61 열간금형강의 열응력제어층 재료조합 및 두께 예측)

  • Park, Na-Ra;Ahn, Dong-Gyu;Oh, Jin-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.857-862
    • /
    • 2014
  • The research on a thermal stress control layer (TSCL) begins to undertake to reduce residual stress and strain in the vicinity of the joined region between the hardfacing layer and the base part. The goal of this paper is to estimate the material combination and the thickness of TSCL for the Stellite21 hardfaced STD61 hot working tool steel via three-dimensional finite element analysis (FEA). TSCL is created by the combination of Stellite21 and STD61. The thickness of TSCL ranges from 0.5 mm to 1.5 mm. The influence of the material combination and the thickness of TSCL on temperature, thermal stress and thermal strain distributions of the hardfaced part have been investigated. The results of the investigation have been revealed that a proper material combination of TSCL is Stellite21 of 50 % and STD61 of 50 %, and its appropriate thickness is 1.0 mm.

Analytical and experimental study on the quality improvement of 2 cavity injection-molded LCD frame (2 캐비티 LCD 사출품의 품질향상에 관한 해석 및 실험적 연구)

  • Son, Jae-Hwan;Jang, Eun-Sil;Han, Chang-Woo;Son, Jae-Yong;Lee, Young-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3815-3821
    • /
    • 2012
  • The LCD frame is an important part which supports the BLU of medium/large sized TFT-LCD. To produce it efficiently, it is necessary to achieve the molding process improvement from 1 cavity to 2 cavity system. Because 2 cavity mold is compact and its hot-runner zone is broadened, it is difficult to control the temperature on the mold. In this study, injection molding analysis on the frame in 2 cavity process with FEA(Finite Element Analysis) software is carried out to estimate its quality. The calculated injection molding pressures and maximum deflection in 1 and 2 cavity processes are 41.13 MPa and 1.62 mm, 40.49 MPa and 1.66 mm respectively. The measured maximum flexure load and surface roughness of the left and right frame of 2 cavities are 209 N and 0.08 ${\mu}m$, 193 N and 0.10 ${\mu}m$ while those in 1 cavity are 140 N and 0.13 ${\mu}m$. Thermal image shows that the maximum standard deviation of the temperature on left and right side of 2 cavity mold is $1.23^{\circ}C$. The simulation and measurement results show that the quality of the frame in 2 cavity injection molding process as a whole is not worse than that of 1 cavity system. But maximum flexure loads of the frame in 2 cavity process are far greater than that in 1 cavity process.

Determined Car Door Latch Injection Molding Process Conditions through the Finite Elements Analysis (유한요소 해석을 통한 차량용 도어 래치 사출성형 공정조건 결정)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.499-508
    • /
    • 2016
  • Injection molding is a method for manufacturing many products, wherein a plasticized resin is injected into a mold at high pressure and hardened. According to the method, the product can be manufactured into various forms, and the mass production of up to tens of thousands of products is possible. The purpose of this study was to determine the process conditions for manufacturing a door latch for automobiles, through an analysis of the injection molding method. To calculate an appropriate injection flow for injection molding, a primary analysis for comparing the injection time, pressure, flow pattern, consolidation range, shear stress, shear rate, and weld line, as well as a secondary analysis for determining the conditions for stabilizing the molding temperature, holding pressure, and cooling process, were conducted. The characteristics of injection molding, and their influence on the product quality are discussed. No weld line and pores were observed on the products that had been manufactured based on the process conditions determined above. In addition, there were no flaws regarding the deformation compared to the prototype. Therefore, the manufacture of a product under the conditions determined in this study can reduce the defect rate compared to the existing production, and the process is also more competitive due to reduced production time.

Precision Grinding System for Micro Core-pin (마이크로 코어 핀 정밀 연삭 시스템)

  • Yang, Ji-Kyung;Lee, In-Cheol;Kang, Dong-Seong;Han, Bong-Seok;Han, Yu-Jin;Lee, Jung-Woo;Song, Ki-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.50-57
    • /
    • 2017
  • In the injection molding process, a core that builds a space for a product is installed at the internal place in the mold and fabricated as the frame of the mold. In this make up, the fabricating partial form of the mold at a pin is a core pin. The core pin is finer because an injection mold produces miniaturization and integration. On the other hand, when the core is manufactured using the existing centerless grinder, it generates vibrations because of the lack of a fixed zig for a micro size workpiece. For this reason, an existing centerless grinder without a micron size fixed zig, makes a defective product due to vibration and deformation. In this study, a compact grinding system that can be installed using an existing centerless grinder was fabricated to make a micro size core pin. Using the compact grinding system, grinding experiment for core pin was carried out. The performance of the system was confirmed by measuring the surface roughness, roundness, and cylindricity.

A Study on the Release Characteristics During Wafer-Level Lens Molding Using Thermosetting Materials (열경화성 소재를 사용한 웨이퍼 레벨 렌즈 성형 중 이형 특성에 관한 연구)

  • Park, Si-Hwan;Hwang, Yeon;Kim, Dai-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.461-467
    • /
    • 2021
  • Among the defect factors that can occur when a wafer-level lens is molded using a thermosetting material, the mold sticking problem of a molded lens during the release process can damage the molded substrate and deform the substrate at the wafer level. An experiment was conducted to examine the factors affecting the demolding force in the lens forming process. The demolding force was examined according to the coating material of the molds. The mold was surface-treated with ITO and Ti, followed by plasma treatment in an O2 atmosphere. A DLC coating was then performed, and the curing and releasability were examined. A coating method for the pull-off experiment was selected based on the results. To measure the demolding force according to the curing process conditions, a method of curing at a constant pressure and a method of curing at a constant position were applied. As a result, the TiO2 surface treatment reduced the release force. When cured by controlling the location, curing shrinkage can reduce the adhesion energy of the interface during curing, resulting in better demolding.

Warpage analysis of a Door Carrier Plate in the injection molding Considering the characteristics of LFT (LFT소재 특성을 고려한 Door Carrier Plate 변형 해석)

  • You, Ho-Young;Park, Sihwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3625-3630
    • /
    • 2013
  • The modularization accomplished a big contribution in cost down and assembly-time shortening and the quality increase. But few improvements were made to this design largely due to the inflexibility of steel. In recent years, door modules made of PP-LFT material is manufactured using injection molding method. As a result, the plastic door modules allow more flexibility of door shape and become lighter. Warpage is generally large in the molded plastic door carrier plate due to the limitation of gate location and the fiber orientation. So after a few test injection the mold compensation processing for the improvement of an assembly characteristic. This research was performed to determine the factors that contribute to warpage for a injection-molded door carrier plate and presented differences in three mesh types of meshing method and its results. as a result we can improve process of tooling modification can reduce process of trial and error.

Thread Rolling Analysis for Lead Screw Process Design (Lead Screw 공정 설계를 위한 전조 해석)

  • Shin, Myoung-Soo;Cha, Sung-Hoon;Kim, Jong-Bong;Kim, Jong-Ho;Ra, Seung-Woo
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • This paper presents the numerical analysis of thread rolling. Firstly, the analysis is focused on the effective analysis conditions that guarantee the reliability of the analysis results. The investigated parameters are the number of teeth and the number of elements. Using the analysis results, the number of elements and the number of teeth that guarantee the results are found. And then, the effects of the process parameters such as tool shape and temperature on the thread rolling are investigated. The analysis is carried out using DEFORM-3D. The results show that the flank angle and crest round have an effect on the thread rolling load. It is also shown that temperature have significant effects on the effective strain distribution, rolling load, and crack initiation. The crack initiation is predicted using the Cockcroft-Latham criterion.

A Convergence Study through Durability Analysis due to the Configuration of Automotive Frame Butted (자전거 프레임 버티드 형상에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.271-276
    • /
    • 2018
  • When the driver riding in a bicycle goes on board, the load of driver is shown differently according to the position loaded on the frame of bicycle. The load is applied most at the joint of bike frame and the load at the mid-part of frame is applied least than the other parts. So, the weight of frame is decreased as the part not applied with a lot of load is manufactured into the thin thickness. As the part applied with high load is manufactured into the thick thickness, it can be endured through this load. The configurations of general frame, double butted and triple butted were modelled by using CATIA program. The durabilities of each model due to the load of passenger were investigated by carrying the structural and fatigue analyses. As this study result investigated with the analysis program of ANSYS, the deformation of general frame happened most and that of triple butted became least. These simulation analysis data are intended to be used to design the actual bicycle frame in the most efficient way at design and manufacture.