• Title/Summary/Keyword: 금속 산화물

Search Result 989, Processing Time 0.024 seconds

Material Characteristics of Gold Artifacts of Sarira Reliquary inside Stone Pagoda of Mireuksa Temple Site (미륵사지 석탑 출토 사리장엄 금제유물의 재료학적 특성)

  • Kwon, Hyuk-nam;Yoo, Dong-wan;Lee, Jang-jon;Han, Min-su
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.210-223
    • /
    • 2014
  • When sarira reliquary was found in stone pagoda of Mireuksa Temple, there were 494 gold artifacts, including inner gold pot, gold plate with inscription for Sarira enshrinement, etc. Most of gold artifacts were crafted, but there were 22 gold plates and 4 gold ingots, which did not have any specific shape. It was considered that they had not been crafted. Since gold exists as a metal rather than a metallic oxide in nature, in general, it can be crafted by melting and shaping. However, gold in nature has impurities so it has to be refined to have malleability. The characteristic features were identified through the analysis of gold artifacts from sarira reliquary found in stone pagoda of Mireuksa Temple. The analysis result showed that there were 3 types of gold; pure gold artifacts, artifacts produced with silver containing gold and natural gold ingots. Inner gold pot, gold earrings and gold small beads were produced with pure gold and they contained less than 1wt.% of copper. It seemed like they were produced as pure gold to be shaped by hammering. Gold plate with inscription, tweezers, gold earrings, ingots, etc. were produced with silver containing gold as they had to be more solid. Gold ingots seemed to be natural gold considering the distribution of silver and copper in them, but it cannot be concluded as there are not enough information on gold ingots in Korea. The comprehensive research on gold ingots from various regions in Korea has to be carried out to confirm the above. Sarira Reliquary showed the very sophisticated gold craftsmanship. Gold ingots with the inscriptions, which say 1 nyang, were approximately 14g. Considering the weight of these ingots as standard, weights of other ingots were half nyang(7g), 2 nyang(28g), etc.

Study on Carbon Dioxide Storage through Mineral Carbonation using Sea Water and Paper Sludge Ash (해수와 제지슬러지소각재의 광물탄산화 반응을 이용한 이산화탄소 저장 연구)

  • Kim, Dami;Kim, Myoung-jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • Mineral carbonation is a technology for permanently storing carbon dioxide by reacting with metal oxides containing calcium and magnesium. In this study, we used sea water and alkaline industrial by-product such as paper sludge ash (PSA) for the storage of carbon dioxide through direct carbonation. We found the optimum conditions of both sea water content (mixing ratio of sea water and PSA) and reaction time required in the direct carbonation through various experiments using sea water and PSA. In addition, we compared the amounts of carbon dioxide storage with the cases when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA. The amount of carbon dioxide storage was calculated by using both solid weight increase through the carbonation reaction and the contents of carbonate salts from thermal gravimetric analysis. PSA particle used in this study contained 67.2% of calcium. The optimum sea water content and reaction time in the carbonation reaction using sea water and PSA were 5 mL/g and 2 hours, respectively, under the conditions of 0.05 L/min flow rate of carbon dioxide injected at $25^{\circ}C$ and 1 atm. The amounts of carbon dioxide stored when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA were 113 and $101kg\;CO_2/(ton\;PSA)$, respectively. The solid obtained through the carbonation reaction using sea water and PSA was composed of mainly calcium carbonate in the form of calcite and a small amount of magnesium carbonate. The solid obtained by using ultra-pure water, also, was found to be carbonate salt in the form of calcite.

Improvement of Conductive Micro-pattern Fabrication using a LIFT Process (레이저 직접묘화법을 이용한 미세패턴 전도성 향상에 관한 연구)

  • Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.475-480
    • /
    • 2017
  • In this paper, the conductivity of the fine pattern is improved in the insulating substrate by laser-induced forward transfer (LIFT) process. The high laser beam energy generated in conventional laser induced deposition processes induces problems such as low deposition density and oxidation of micro-patterns. These problems were improved by using a polymer coating layer for improved deposition accuracy and conductivity. Chromium and copper were used to deposit micro-patterns on silicon wafers. A multi-pulse laser beam was irradiated on a metal thin film to form a seed layer on an insulating substrate(SiO2) and electroless plating was applied on the seed layer to form a micro-pattern and structure. Irradiating the laser beam with multiple scanning method revealed that the energy of the laser beam improved the deposition density and the surface quality of the deposition layer and that the electric conductivity can be used as the microelectrode pattern. Measuring the resistivity after depositing the microelectrode by using the laser direct drawing method and electroless plating indicated that the resistivity of the microelectrode pattern was $6.4{\Omega}$, the resistance after plating was $2.6{\Omega}$, and the surface texture of the microelectrode pattern was uniformly deposited. Because the surface texture was uniform and densely deposited, the electrical conductivity was improved about three fold.

Electrospray-assisted Preparation of Polymer Microparticles Containing Water-insoluble Bioactive Compounds (전기방사법을 이용한 유용성 생리활성성분을 포함한 고분자 마이크로입자 제조)

  • Hwang, Yoon Kyun;Jeong, Min Kuk;Cho, Sung Yeon;Park, Sung Il;Cho, Eun Chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • An anti-aging compound ethyl (4-(2,3-dihydro-1H-indene-5-carboxyamido) benzoate) rapidly crystallizes in emulsion systems, and a flavonoid 3,5,7-trihydroxy-4'-methoxy-8-prenylflavone bearing a whitening function causes coloration of cosmetic compounds when mixed with metal oxides. In this study, an electrospray method was used to encapsulate water-insoluble bioactive compounds in polymeric microparticles. Poly (methyl methacrylate) and polycaprolactone were used to encapsulate ethyl (4-(2,3-dihydro-1H-indene-5-carboxyamido) benzoate) and 3,5,7-trihydroxy-4'-methoxy-8-prenylflavone, respectively. It was found that polymer concentration, the structure of electrospray nozzle, and compatibility between polymers and bioactive compounds were important factors in the preparation of the particles. Polycaprolactone particles encapsulating 3,5,7-trihydroxy-4'-methoxy-8-prenylflavone was effective in preventing coloration of a cosmetic compound when mixed with metal oxides.

A Biogeochemical Study on the Heavy Metal Leaching from Coal Fly Ash Disposed by Dangjin Fire Plant in the Coastal Environment (당진화력발전소의 석탄회 연안매립과 중금속 원소의 용출에 대한 생지화학적 연구)

  • Cho, Kyu-Seong;Roh, Yul;Chung, Duk-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.112-122
    • /
    • 2007
  • It is known that coal-derived fly ashes have the unique chemical composition and mineralogical characteristics. Since iron oxides in coal fly ash are enriched with heavy metals, the subsurface media including soils, underground water, and sea water are highly likely contaminated with heavy metals when the heavy metals are leached from fly ashes by water-fly ash interactions. The purpose of this study was to investigate how indigenous bacteria affect heavy metal leaching and mineralogy in fly ash slurry during the fly ash-seawater interactions in the ash pond located in Dangjin seashore, Korea. The average pH of ash pond seawater was 8.97 in nature. Geochemical data showed that microbial activity sharply increased after the 7th day of the 60-day course batch experiments. Compared with other samples including autoclaved and natural samples, ${SO_4}^{2-}$ was likely to decrease considerably in the fly ash slurry samples when glucose was added to stimulate the microbial activity. Geochemical data including Eh/pH, alkalinity, and major and trace elements showed that the bacteria not only immobilize metals from the ash pond by facilitating the chemical reaction with Mn, Fe, and Zn but may also be able to play an important role in sequestration of carbon dioxide by carbonate mineral precipitation.

The Effect of Ag thickness on Optical and Electrical Properties of V2O5/Ag/ITO Multilayer (Ag의 두께에 따른 V2O5/Ag/ITO 구조의 다층 박막의 광학적, 전기적 특성)

  • Ko, Younghee;Park, Gwanghoon;Ko, Hang-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.7-11
    • /
    • 2014
  • Recently, the buffer layers consisting of poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT-PSS) are extensively used to improve power conversion efficiency (PCE) of organic solar cells. However, PEDOT-PSS is not suitable for mass production of organic solar cells due to its intrinsic acid and hygroscopic properties. Moreover, because of chemical reactions between indium tin oxide (ITO) layer and PEDOT-PSS layer, the interface is not stable. For these reasons, alternative materials such as $V_2O_5$ have been developed to be an effective buffer layer. In this work, we used $V_2O_5$/Ag/ITO multilayer structure for the anode buffer layer. With variation of thickness of Ag layer, we investigated the optical and electrical properties of $V_2O_5$/Ag/ITO multi-layer films. As a result, we found that the electrical properties were improved with increasing Ag thickness while optical transmittance decreases in visible wavelength region. From the calculation of figure of merit (FOM) which is used to evaluate proper structure for transparent of optoelectronic, $V_2O_5$/Ag/ITO multilayer electrode was optimized with 4 nm thick Ag layer in optical (88% in transmittance) and electrical ($4{\times}10^{-4}{\Omega}cm$) properties. This indicates that $V_2O_5$/Ag/ITO multilayer electrode could be a candidate for the anode of optoelectronic devices.

Thermal Deactivation of Plate-type V2O5-WO3/TiO2 SCR Catalyst (Plate-type V2O5-WO3/TiO2 SCR 촉매의 열적 비활성화 특성)

  • Cha, Jin-Sun;Park, Jin-Woo;Jeong, Bora;Kim, Hong-Dae;Park, Sam-Sik;Shin, Min-Chul
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.576-580
    • /
    • 2017
  • In the present paper, the thermal deactivation characteristics of plate-type commercial $V_2O_5-WO_3/TiO_2$ SCR catalyst were investigated. For this purpose, the plate-type catalyst was calcined at different temperatures ranging from $500^{\circ}C$ to $800^{\circ}C$ for 3 hours. Structural and morphological changes were characterized byXRD, specific surface area, porosity, SEM-EDS and also NOx conversion with ammonia according to the calcine temperature. The NOx conversion decreased with increasing calcine temperature, especially when the catalysts were calcined at temperatures above $700^{\circ}C$. This is because the crystal phase of $TiO_2$ changed from anatase to rutile, and the $TiO_2$ grain growth and $CaWO_4$ crystal phase were formed, which reduced the specific surface area and pore volume. In addition, $V_2O_5$, which is a catalytically active material, was sublimated or vaporized over $700^{\circ}C$, and a metal mesh used as a support of the catalyst occurred intergranular corrosion and oxidation due to the formation of Cr carbide.

Effect of Lithium Ion Concentration on Electrochemical Properties of BF3LiMA-based Self-doping Gel Polymer Electrolytes (BF3LiMA기반 자기-도핑형 겔 고분자 전해질의 전기화학적 특성에 미치는 리튬이온 농도의 영향)

  • Kang, Wan-Chul;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.211-216
    • /
    • 2010
  • Boron trifluoride lithium methacrylate ($BF_3$LiMA)-based gel polymer electrolytes (GPEs) were synthesized with various $BF_3$LiMA concentration to elucidate the effect on ionic conductivity and electrochemical stability by a AC impedance and linear sweep voltammetry (LSV). As a result, the highest ionic conductivity reached $5.3{\times}10^{-4}Scm^{-1}$ at $25^{\circ}C$ was obtained for 4 wt% of $BF_3$LiMA. Furthermore, high electrochemical stability up to 4.3 V of the $BF_3$LiMA-based GPE was observed in LSV measurement since the counter anion was immobilized in this self-doped system. On the other hand, it was assumed that there was a rapid decomposition of electrolytes on a lithium metal electrode which results in a high solid electrolyte interface (SEI) resistance. However, a high stability toward graphite or lithium cobalt oxide (LCO) electrode thereby a low SEI resistance was observed from the AC impedance measurement as a function of storage time at $25^{\circ}C$. Consequently, the high ionic conductivity, good electrochemical stability and the good interfacial compatibility with graphite and LCO were achieved in $BF_3$LiMA-based GPE.

Adsorption and Oxidation of Polychlorinated Phenols onto Transition Metal Oxides (I). Adsorption Characteristics and Reductive Dissolution of ${\sigma}-MnO_2$(s) (전이금속산화물에 대한 다염소치환페놀류의 흡착과 산화 (제 1 보). ${\sigma}-MnO_2$(s)의 흡착특성과 환원성 용해)

  • Jong Hoon Yun;Jong Wan Lim;Heung Lark Lee;Sang Oh Oh;Sun Haing Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.226-232
    • /
    • 1991
  • Adsorption and oxidation of polychlorinated phenols by suspended ${\sigma}-MnO_2$ in aqueous solution have been studied. Of the proposed mechanism, adsorption reaction of chlorophenols onto ${\sigma}-MnO_2$(s) depended upon the pH of the solution and the concentration of chlorophenol. Adsorption isotherms showed a reasonably good fit to the Langmuir isotherm. From the pH dependence of adsorption partition coefficient and the linear relationship between octanol-water partition coefficient and adsorption partiton coefficient of chlorophenol, it is estimated that adsorption is dominated by its hydrophobicity. The rate of electron transfer reaction evaluated from the rate of reductive dissolution of ${\sigma}-MnO_2$(s) depended linearly upon the concentration of chlorophenol and the pH of medium. Observed rate constants ($K_0$) of the meta-substituted chlorophenol were lower than that of the ortho-or para-chlorophenol because of resonance effect of chlorophenoxy radical. It is indicated that this radical is produced in the adsorption process and the electron transfer reaction is rate determining.

  • PDF

Deterioration Assessment and Structural‐Reinforcement of Stone Lantern of the Four Guardian Kings in Beopjusa Temple, Boeun (보은 법주사 사천왕석등의 비파괴 훼손도 평가 및 구조보강)

  • Choie, Myoungju;Lee, Myeong Seong;Jun, Yu Gun;Lee, Mi Hye;Kim, Yuri;Ha, Jun Kyeong
    • Journal of Conservation Science
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2017
  • The stone lantern of the four guardian kings in the Beopjusa temple at Boeun was mainly made of biotite granodiorite consisting of porphyritic-textured potassium feldspar and included in ilmenite series. A base stone made of alkali granite was buried, after founded its place during an earlier restoration process. Cracking and break out are noticeable on this object. In addition, discoloration, salt crusting, and epiphytes were observed. The lantern was vulnerable in terms of physical and structural stability caused by cracking in the front and back of the light chamber and in the non-horizontal direction. According to the conservational condition of the stone lantern, structural reinforcement was carried out based on calculations, including those on the position, size, and anchor length of the titanium stiffener. Chemical and biological pollutants were washed off without damage to the surface of the stone material. Oxygenated iron pieces were replaced with titanium. Ethyl silicate was applied to the surface of the lantern for consolidation and smooth drainage.