• Title/Summary/Keyword: 금속화

Search Result 2,189, Processing Time 0.037 seconds

Material Topology Optimization of FGMs using Homogenization and Linear Interpolation Methods (균질화 및 선형보간법을 이용한 기능경사 내열복합재의 물성분포 최적설계)

  • 조진래;박형종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.495-503
    • /
    • 2001
  • In a functionally graded materials(FGM), two constituent material particles are mixed up according to a specific volume fraction distribution so that its thermoelastic behavior is definitely characterized by such a material composition distribution. Therefore, the designer should determine the most suitable volume fraction distribution in order to design a FGM that optimally meets the desired performance against the given constraints. In this paper, we address a numerical optimization procedure, with employing interior penalty function method(IPFM) and FDM, for optimizing 2D volume fractions of heat-resisting FGMs composed of metal and ceramic. We discretize a FGM domain into finite number of homogenized rectangular cells of single design variable in order for the optimization efficiency. However, after the optimization process, we interpolate the discontinuous volume fraction with globally continuous bilinear function in order to enforce the continuity of volume fraction distributions.

  • PDF

V-Band filter using Multilayer MCM-D Technology (MCM-D 공정기술을 이용한 V-BAND FILTER 구현에 관한 연구)

  • Yoo Chan-Sei;Song Sang-Sub;Part Jong-Chul;Kang Nam-Kee;Cha Jong-Bum;Seo Kwang-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.64-68
    • /
    • 2006
  • Novel system-on-package (SOP) - D technology to improve the mechanical and thermal properties of a MCM-D substrate was suggested. Based on this investigation, the two types of band pass filters for the V-band application with unique structure were designed and implemented using 2-metals, 3-BCB layers. The first type using distributed resonator had the insertion loss below 2.6 dB at 55 GHz and group delay was below 0.06 ns. For the second type with edge coupled structure, the insertion loss and group delay were 3 dB and 0.1 ns, respectively. Suggested MCM-D substrate with band pass filter can be used to evaluate mm-Wave system including flip-chip bonded MMIC.

Ti/Cu CMP process for wafer level 3D integration (웨이퍼 레벨 3D Integration을 위한 Ti/Cu CMP 공정 연구)

  • Kim, Eunsol;Lee, Minjae;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.37-41
    • /
    • 2012
  • The wafer level stacking with Cu-to-Cu bonding becomes an important technology for high density DRAM stacking, high performance logic stacking, or heterogeneous chip stacking. Cu CMP becomes one of key processes to be developed for optimized Cu bonding process. For the ultra low-k dielectrics used in the advanced logic applications, Ti barrier has been preferred due to its good compatibility with porous ultra low-K dielectrics. But since Ti is electrochemically reactive to Cu CMP slurries, it leads to a new challenge to Cu CMP. In this study Ti barrier/Cu interconnection structure has been investigated for the wafer level 3D integration. Cu CMP wafers have been fabricated by a damascene process and two types of slurry were compared. The slurry selectivity to $SiO_2$ and Ti and removal rate were measured. The effect of metal line width and metal density were evaluated.

Synthesis and Characterization of DNA-mediated Gold Nanoparticles by Chemical Reduction Method (화학적환원에 의한 DNA-mediated 금 나노입자의 합성 및 특성)

  • Sohn, Jun Youn;Sohn, Jeong Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.515-519
    • /
    • 2015
  • Complexes composed of hydrogen tetrachloroaurate (III) trihydrate ($HAuCl_4{\cdot}3H_2O$) and DNA were first formed for the synthesis of gold nanoparticle using a DNA template, which were validated using UV-Vis spectroscopy. The morphology of complexes were also characterized by scanning electron microscopy (SEM). DNA-mediated gold nanoparticles were synthesized by the chemical reduction of DNA-Au(III) complexes using hydrazine ($N_2H_4$) and sodium borohydride ($NaBH_4$) as reducing agents. The effects of reducing agent types and their concentration on the formation of gold nanoparticles were investigated. The results showed that hydarazine was the most effective for the reduction of DNA-Au(III) complex. The DNA-mediated gold nanoparticles were characterized SEM, particle size analyzer (PSA), and transmission electron microscopy (TEM). Gold nanoparticles with 55~80 nm in diameter were formed by the aggregation of smaller gold nanoparticles (~nm), which was confirmed in the DNA matrix.

Characteristics of a Hydrogen Isotope Storage and Accountancy System (수소동위원소 저장 계량 장치 특성 연구)

  • KIM, YEANJIN;JUNG, KWANGJIN;GOO, DAESEO;PARK, JONGCHUL;JEON, MIN-GU;YUN, SEI-HUN;CHUNG, HONGSUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.541-546
    • /
    • 2015
  • Global energy shortage problem is expected to increase driven by strong energy demand growth from developing countries. Nuclear fusion power offers the prospect of an almost infinite source of energy for future generations. Hydrogen isotope storage and delivery system is a important subsystem of a nuclear fusion fuel cycle. Metal hydride is a method of the high-density storage of hydrogen isotope. For the safety storage of hydrogen isotope, depleted uranium (DU) has been widely proposed. But DU needs a safe test because It is a radioactive substance. The authors studied a small-scale DU bed and a medium-scale DU bed for the safety test. And then we made a large-scale DU bed and stored hydrogen isotopes in the bed. Before the hydriding/dehydriding, we tested it's heating and cooling properties and carried out an activation procedure. As a result, Reaction rate of DU-$H_2$ is more rapid than the other metal hydride ZrCo. Through the successful storage result of our large bed, the development possibility of the hydrogen isotope storage technology seems promising.

A Study of Hydrodemetallation of VO-TPP over CoMo/γ-Al2O3 Catalyst (CoMo/γ-Al2O3촉매상에서 VO-TPP의 수소 첨가 탈금속반응에 관한 연구)

  • Shim, Hyeon-Seop;Park, Hea-Kyung;Ko, Eul-Suk;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.701-708
    • /
    • 1993
  • Hydrodemetallation(HDM) of VO-tetraphenylporphyrin(VO-TPP) was studied over $CoMo/{\gamma}-Al_2O_3$ catalyst at emperatures between $300^{\circ}C$ and $400^{\circ}C$, the total pressure between $15{\times}10^5$ and $30{\times}10^5$ Pa and the contact times between 0.008 and 0.020gcat. hr./ml teed. HDM of VO-TPP was inhibited by pyridine because the increase of pyridine concentration(up to 4mole%) caused the decrease of HDM conversion. The reaction rate of VO-TPP was found to be apparently 1st order over $350^{\circ}C$ and its activation energy was determined to be about 23kca1/mo1e by Arrhenius plot. Pore mouth-plugging phenomena were shown by ad/desorption isotherm and pore size distribution of fresh and aged catalysts.

  • PDF

A Study on the Optimal Design and Performance Analysis of the Solid-Gas Chemical Heat Transformer (고-기 화학열변환기의 최적설계 및 성능해석에 관한 연구)

  • Choi, S.H.;Lee, S.I.;Baek, I.H.;Choi, I.S.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.729-736
    • /
    • 1997
  • For the recovery of industrial waste heat, a chemical heat transformer based on the reversible reaction between metal chlorides and ammonia gas was designed and a pilot scale unit of 1 kW-1hr was developed. A static calculation, which determined the amount of reacting materials and operating condition of system, and dynamic simulations were performed for the optimal design. The temperature and output power of generator in the system were varying with the amount of salt and heat exchange area. Optimum conditions such as the amount of salt-graphite, apparent density and size of mechanical unit were determined by the dynamic simulation for the system. According to the operating cycle of 4 stages, experimental results of temperature and output power were well agreed with the simulation values. This chemical heat transformer is turned out to be a very promising system for recovery of industrial waste heat because of its effective feature of lifting temperature.

  • PDF

Contrallable P-type method for WSe2 using Octadecyltrichlorosilane (OTS) (Octadecyltrichlorosilane (OTS)을 사용한 WSe2의 농도조절이 가능한 P형 도핑 방법)

  • Kim, Jin-Ok;Gang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.193.2-193.2
    • /
    • 2015
  • 최근 3차원 반도체의 물질적인 한계를 극복하기 위해 2차원 전이금속 칼코게나이드(TMD)에 대한 연구가 활발히 진행되고 있다. 하지만 TMD 물질의 도핑 방법에 대한 수많은 연구에도 불구하고 대부분이 n채널 물질인 MoS2에 대한 것에 국한되어 있다. 게다가 이전의 TMD 도핑 기술 연구 결과는 채널이 도체화 될 정도의 매우 높은 농도의 도핑 현상만을 보여주었다. 이 연구에서 우리는 WSe2로 만든 p형 채널 트랜지스터에서 Octaecyltrichlorosilane(OTS)층의 농도 조절로 제어가 가능한 약한 농도의 p형 도핑기술을 보여준다. 이 p형 도핑 현상은 OTS의 메틸기(-CH3)그룹에 의한 양성 쌍극자모멘트가 WSe2내의 전자 농도를 낮추는데서 기인한다. 제어가 가능한 p형 도핑은 $2.1{\times}10^{11}cm^{-2}$ 사이에서 $5.2{\times}10^{11}cm^{-2}$로 degenerate되지 않은 정도로 WSe2 기반의 광, 전기적인 소자에서 적절한 농도로 최적화 될 수 있다. (도핑 정도에 따른 문턱전압 상승, 전류 on/off율 상승, 전계효과 이동도 상승, 광응답성 하락, 광검출성 하락) 또한 OTS에서 비롯한 p도핑 효과는 대기중에서 오랜시간이 지나도 작은 성능 변화만을 보여주며(60시간 후 18~34% 문턱전압 감소변화량) $120^{\circ}C$의 열처리를 통하여 저하된 성능이 거의 완벽하게 회복된다. 이 연구는 Raman 분광법과 전기적, 광학적 측정을 통하여 분석되었으며 OTS 도핑현상이 WSe2 박막의 두께와 무관함 또한 확인했다.

  • PDF

Electrochemical Aspects of Lithium and Sodium Intercalation into Two Dimensional FeMo$O_4$Cl (리튬과 소듐이 층간삽입된 FeMo$O_4$Cl의 전기화학적 성질)

  • Chang, Soon Ho;Song, Seung Wan;Choy, Jin Ho
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.9
    • /
    • pp.488-494
    • /
    • 1997
  • Lithium and sodium ions have been intercalated into two dimensional structure of $FeMoO_4Cl$. The electronic localization and the large difference in unit cell parameter between the pristine material and the intercalates lead to the existence of large biphased domains. In the case of the lithium system, a narrow range of $Li_xFeMoO_4Cl$ ($0.95{\leq}x{\leq}1.06$) solid solution has been found around the $LiFeMoO_4Cl$ composition. The OCV curve fitting has been performed using Armand's model. The occurrence of several parts in the charge-discharge curve is related to the electronic and structural modifications of the material during the intercalation process.

  • PDF

Fabrication of Ceramic and Ceramic-Polymer Composite Thick Films by Aerosol Deposition Method (Aerosol Deposition Method을 응용한 세라믹 후막과 세라믹 -폴리머 복합체 후막 제작)

  • Cho, Sung-Hwan;Yoon, Young-Joon;Kim, Hyung-Jun;Kim, Hyo-Tae;Kim, Ji-Hoon;Nam, Song-Min;Baik, Hong-Koo;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.170-170
    • /
    • 2009
  • aerosol deposition method(ADM)은 에어로졸화 된 고상의 원료분말을 노즐을 통해 분사시켜 소결과정을 거치지 않고도 상온에서 고밀도 후막을 제조할 수 있으며, 세라믹, 고분자, 금속 등의 다양한 코팅이 가능하다. 본 연구에서는 ADM들 이용하여 세라믹 후막 및 세라믹-폴리머 복합체 후막을 제조하였고 60 mm 노즐을 이용하여 대면적 세라믹 후막 성장도 시도되었다. 세라믹 후막의 원료로는 낮은 유전율과 우수한 품질계수를 갖는 $Al_2O_3$ 분말과 AlN의 분말이 사용되었으며, 세라믹에 비하여 높은 탄성과 1,500~2,000의 품질계수를 갖는 테프론(teflon) 분말이 세라믹과의 복합체 후막성장에 사용되었다. 세라믹-폴리머 복합체의 경우, 폴리머의 함유량에 따라 후막 내부의 결정립 크기가 20 때의 평균 결정립을 갚는 세라믹 후막에 비해 최대 10배 정도까지 증가하는 것을 확인할 수 있었으며, 이에 따라 후막에서의 유전특성 및 전기적인 특성, 열전도도, 투과율이 크게 변화하는 것을 확인할 수 있었다. 본 연구에서는 이러한 물성 변화에 대한 원인 고찰을 위하여 후막의 미세구조 및 화학조성 등에 다양한 분석이 이루어졌으며, 상온에서 성막되는 후막의 고분자 기판으로의 응용을 위한 최적의 공정조건을 제시하고자 한다.

  • PDF