• Title/Summary/Keyword: 금속화

Search Result 2,189, Processing Time 0.035 seconds

pH-dependence in the inhibitory effects of Zn2+ and Ni2+ on tolaasin-induced hemolytic activity (Zn2+와 Ni2+에 의한 톨라신 용혈활성 저해효과의 pH 의존성)

  • Yun, Yeong-Bae;Choi, Tae-Keun;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.213-217
    • /
    • 2018
  • Tolaasin secreted by Pseudomonas tolaasii is a peptide toxin and causes brown blotch disease on the cultivated mushrooms by collapsing cellular and fruiting body structure. Toxicity of tolaasin was evaluated by measuring hemolytic activity because tolaasin molecules form membrane pores on the red blood cells and destroy cell membrane structure. In the previous studies, we found that tolaasin cytotoxicity was suppressed by $Zn^{2+}$ and $Ni^{2+}$. $Ni^{2+}$ inhibited the tolaasin-induced hemolysis in a dose-dependent manner and its $K_i$ value was 1.8 mM. The hemolytic activity was completely inhibited at the concentration higher than 10 mM. The inhibitory effect of $Zn^{2+}$ on tolaasin-induced hemolysis was increased in alkaline pH, while that of $Ni^{2+}$was not much dependent on pH. When the pH of buffer solution was increased from pH 7 to pH 9, the time for 50% hemolysis ($T_{50}$) was increased greatly by $100{\mu}M$ $Zn^{2+}$; however, it was slightly increased by 1 mM $Ni^{2+}$ at all pH values. When the synergistic effect of $Zn^{2+}$ and $Ni^{2+}$ on tolaasin-induced hemolysis was measured, it was not dependent on the pH of buffer solution. Molecular elucidation of the difference in pH-dependence of these two metal ions may contribute to understand the mechanism of tolaasin pore formation and cytotoxicity.

APEC Mining Task Force 개요

  • Heo, Cheol-Ho
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.110-110
    • /
    • 2010
  • 2009년 7월 23일-24일 양일간의 APEC MTF 컨퍼런스는 APEC 회원 경제가 아시아-태평양지역에서 광업부문의 지속가능한 발전의 주제를 토의할 기회를 제공했다. 본 컨퍼런스는 APEC의 광업부문의 지속가능한 발전이라는 프로젝트의 중요 부분이며 컨퍼런스의 활발한 참여는 프로젝트의 성공을 증진시켰다. 지속가능한 발전에 대한 안건이 수년간 APEC의 핵심부분이었으며, 특히 광업장관(MRM)회의에 상정되어 왔다. 2004년 6월 칠레 안토파가스타의 제1차 회의에서, 광업장관들은 APEC 지역에서 광업 및 금속산업의 지속가능한 발전은 부를 창출하고, 환경사업을 창출하며, 사회적으로 책임있는 발전을 도모하며 사회를 위한 향상된 가치를 만들어낸다는데 동의했다. 초기의 action item들 중에서 지속가능한 발전에 있어서 광물 및 금속의 기여를 규명하는 것도 있었다. 광업에 있어서 지속가능한 발전에 대한 안건의 토의는 2005년 10월 한국의 경주 제2차 APEC MRM 회의에서 속계되었다. 관련된 action task는 채광 후 토지운영 뿐만 아니라 에너지 효율기술, 광업 오염 통제 기술과 같은 환경친화적인 채광기술에 대한 정보교환 및 협조를 독려하는 것이었다. 2007년 호주 퍼스의 제3차 회의에서 APEC MRM 회의는 특히 지구화의 시대에 APEC 지역 광물자원의 지속가능한 발전에 대한 긴밀한 지역적 협조에 대한 필요성을 인지하고 있다. 장관들은 역시 광업부문에서 지속가능한 발전에 대한 APEC 위상을 정립하기 위한 작업을 주도하기로 했으며 APEC 경제의 공통관심사를 UNCSD에 반영키 위한 자료제공을 하기로 결정했다. APEC 광업분야의 지속 가능한 개발에 관한 APEC MTF회의는 호주, 캐나다, 칠레, 중국, 인도네시아, 일본, 말레이시아, 파푸아 뉴기니, 페루, 필리핀, 한국, 러시아, 싱가포르, 타이완, 태국, 미국, 베트남에서 자신들의 지속 가능한 개발을 위한 활동에 관한 발표나 의견을 제시하였다. 세계 은행이나 AIM에서도 발표를 하였다. 중요한 소주제들은 다음과 같다. $\cdot$ APEC MTF가 APEC 광업분야의 지속 가능한 발전을 추구하는데 있어 적절한 포럼이라는 것 $\cdot$ 기업들이 사회적 책임(CSR)을 성실히 이행할 필요가 있다는 것 $\cdot$ 수자원과 인적자원의 부족을 다룰 필요가 있다는 것 $\cdot$ 적절한 광산 복구가 필요하다는 것이다. 한국은 "광업분야의 지속가능한 발전을 위한 환경과 광업간의 균형"이라는 프로젝트 아이디어를 제안했다. 인도네시아와 말레이시아는 한국측 프로젝트 수행의 중요성을 강조했다. 러시아 연방은 "광업에 있어 투자 활성화"라는 프로젝트 아이디어를 제안했다. 이 관점에서 MTF는 APEC 투자전문가 그룹과의 협력을 지지했으며 이 포럼간 활동을 활성화시키기 위하여 APEC 사무국에 요청했다. 이 프로젝트는 세계 광업분야의 투자를 증진시키는 최적관행 분석에 따라 제안될 것이고 수행될 것이다. 말레이시아는 광업 및 광업 산업의 지속가능한 발전지시자를 위한 역량구축 프로젝트를 제안했다. 태국은 말레이시아의 제안을 지지했으며 공동프로젝트를 제안했다.

  • PDF

The Characteristic Improvement of Photodiode by Schottky Contact (정류성 접합에 의한 광다이오드의 특성 개선)

  • Hur Chang-wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1448-1452
    • /
    • 2004
  • In this paper, a photodiode capable of obtaining a sufficient photo/ dark current ratio at both a forward bias state and a reverse bias state is proposed. The photodiode includes a glass substrate, an Cr thin film formed as a lower electrode over the glass substrate, Cr silicide thin film(∼l00$\AA$) ) formed as a schottky barrier over the Cr thin film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the Cr silicide thin film. Transparent conduction film ITO (thickness 100nm) formed as an upper electrode over the hydro-generated amorphous silicon film is then deposited in pure argon at room temperature for the Schottky contact and light window. The high quality Cr silicide thin film using annealing of Cr and a-Si:H is formed and analyzed by experiment. We have obtained the film with a superior characteristics. The dark current of the ITO/a-Si:H Schottky at a reverse bias of -5V is ∼3$\times$IO-12 A/un2, and one of the lowest reported, hitherto. AES(Auger Electron Spectroscophy) measurements indicate that this notable improvement in device characteristics stems from reduced diffusion of oxygen, rather than indium, from the ITO into the a-Si:H layer, thus, preserving the integrity of the Schottky interface. The spectral response of the photodiode for wavelengths in the range from 400nm to 800nm shows the expected behavior whereby the photocurrent is governed by the absorption characteristics of a-Si:H.

The Effect of NH3 Concentration during Co-precipitation of Precursors from Leachate of Lithium-ion Battery Positive Electrode Active Materials (리튬이차전지 양극활물질의 암모니아 침출액에서 공침법에 의한 활물질 전구체의 합성에 대한 암모니아 농도의 영향)

  • Park, Sanghyuk;Ku, Heesuk;Lee, Kyoung-Joon;Song, Jun Ho;Kim, Sookyung;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.9-16
    • /
    • 2015
  • In a recycling scheme of spent lithium ion batteries, a co-precipitation process for the re-synthesis of precursor is essential after the leaching of lithium ion battery scraps. In this study, the effect of ammonia as impurity during the co-precipitation process was investigated in order to re-synthesize a precursor of Ni-rich cathode active material $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM 622). As ammonia concentration increases from 1 M (the optimum condition for synthesis of the precursors based on 2 M of metal salt solution) to 4 M, the composition of obtained precursors deviates from the designed composition, most notably for Ni. The Ni co-precipitation efficiency gradually decreases from 100% to 87% when the concentration of ammonia solution increases from 1 M to 4 M. Meanwhile, the morphological properties of the obtained precursors such as sphericity, homogeneity and size distribution of particles were also investigated.

Syntheses and Properties of ZnS:Mn/ZnS Core-Shell Quantum Dots Prepared via Thermal Decomposition Reactions of Organometallic Precursors at Various Reaction Temperatures (다양한 온도 조건에서의 ZnS:Mn/ZnS 코어-쉘 양자점의 합성 및 광 특성에 관한 연구)

  • Lee, Jae-Woog;Hwang, Cheong-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.677-682
    • /
    • 2009
  • ZnS:Mn/ZnS core-shell quantum dots (QDs), were synthesized via a thermal decomposition reaction of organometallic precursors in a hot solvent mixture. The synthetic conditions of the quantum dots were monitored at various reaction temperatures for the core formation, while the shell formation temperature was fixed at 135$^{\circ}C$. The obtained colloidal nanocrystals at corresponding temperatures were characterized by UV-Vis, solution photoluminescence (PL) spectroscopies, and further obtained powders were characterized by XRD, HR-TEM, and EDXS analyses. The synthetic temperature condition to obtain the best PL emission intensity for the core-shell QD was 135$^{\circ}C$, for both core and shell formation. At this temperature, solution PL spectrum showed a narrow emission peak at 583 nm with a relative PL quantum efficiency of 42.15%. In addition, the measured spherical particle sizes for the ZnS:Mn/ZnS nanocrystals via HR-TEM were in the range of 4.0 to 5.4 nm, while ellipsoidal particles were obtained at 150$^{\circ}C$.

pH, Alkaline Earth Metal Ion Effects and Miscibility with Hexadecanol on the Monolayer of Palmitic Acid at the Air-Water Interface (기-액 계면에서 Palmitic Acid 단분자막에 대한 pH, 알칼리토금속 이온의 영향 및 Hexadecanol 분자와의 섞임성)

  • Jong-Jae Chung;Byung-Il Seo;Hai-Won Lee;Min-Young Ju
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.294-301
    • /
    • 1993
  • ${\pi}$-A isotherms of the Palmitic acid(PA) with increasing pH shifted to the low area/molecule due to the dissociation of PA at the air-water interface. More condensation of PA monolayers occurred by the addition of Mg$^{2+}$, Ca$^{2+}$ and Ba$^{2+}$ ion in subphase. This condensing effect was increased with increasing the concentration of these ions. Due to the interaction with each ion, PA were formed Mg, Ca, Ba-Palmitate complex. The binding structure between alkaline earth ion and carboxylate ligand in PA has been identified by IR spectrometry. The order of condensing effect of alkaline earth ions at pH 8 was Ca$^{2+}$ > Ba$^{2+}$+ > Mg$^{2+}$. The condensing effect except for Mg$^{2+}$ decreased with increasing atomic number. Whereas, the condensing effect in pure water system decreased with decreasing atomic number in the sequence: Ba$^{2+}$ > Ca$^{2+}$ > Mg$^{2+}$. The miscibility of binary system of PA and hexadecanol in monolayer showed that the miscibility was good for the pure water system. But, in the buffered pH 8 system, bad miscibility was found.

  • PDF

Preparation of Coil-Embolic Material Using Syndiotactic Poly(vinyl alcohol) Gel Spun Fibers (교대배열 PVA 젤 섬유를 이용한 고분자 색전 코일 제조)

  • Seo, Young Ho;Oh, Tae Hwan;Han, Sung Soo;Joo, Sang Woo;Khil, Myeong Seob
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.486-493
    • /
    • 2013
  • The structure, morphology, and physical properties of syndiotatic poly(vinyl alcohol) (s-PVA) gel spun fibers were investigated to prepare polymeric embolization coils. S-PVA was prepared by saponification of the poly(vinyl acetate)/poly(vinyl pivalate)(PVAc/PVPi) copolymer. The viscosity of s-PVA solutions showed shear thinning behavior and the solution formed a homogeneous phase. Based on shear viscosity change with concentration, the optimum dope concentration was selected as 13 wt%, after which s-PVA fibers were spun and the solvent was removed. The fibers were then drawn with a maximum draw ratio of 15. A polymeric embolization coil was made of the s-PVA gel-spun fibers. The fibers were wound densely onto rigid rod and then annealed at different annealing temperatures. The polymeric embolization coil annealed at $200^{\circ}C$ was similar to metallic coils and its shape was maintained well after extension. Overall, gel-spun PVA fibers performed well for the preparation of primary and secondary coils to replace metallic coils.

First-Principles Investigation of the Surface Properties of LiNiO2 as Cathode Material for Lithium-ion Batteries (제일원리계산을 이용한 리튬이차전지 양극활물질 LiNiO2의 표면 특성에 관한 연구)

  • Choi, Heesung;Lee, Maeng-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.169-176
    • /
    • 2013
  • Solid state lithium oxide compounds of layered structure, which has high stability of structure, are mainly used as the cathode materials in lithium-ion batteries (LIBs). Recently, the investigation of Solid Electrolyte Interphase (SEI) between active materials and electrolyte has been focusing to improve the performance of lithium-ion batteries. For the investigation of the SEI, the study of surface properties of cathode materials and anode materials is also required in advance. $LiNiO_2$ and $LiCoO_2$ are very similar layered structure of cathode active materials and representative solid state lithium oxide compounds in LIBs. Various experimental and theoretical studies have been doing for $LiCoO_2$. The theoretical investigation of $LiNiO_2$ is not sufficient, however, even if experimental studies of $LiNiO_2$ are enough. In this study, the surface energies of nine facets of $LiNiO_2$ crystal facets were calculated by Density Functional Theory. In XRD data of $LiNiO_2$, (003), (104), (101), et al. facets are main surfaces in order. However, the results of calculation are different with XRD data. Thus, both (104) and (101) facets, which are energetically stable and measured in XRD, are mainly exposed in the surface of $LiNiO_2$ and it is expected that intercalation and de-intercalation of Li-ion will be affected by them.

Antioxidant Potential of Enzymatic Extracts from Blueberry (Vaccinium corymbosum L.) (블루베리 (Vaccinium corymbosum L.) 유래 효소 추출물의 항산화성)

  • Senevirathne Mahinda;Jeon You-Jin;Ha Jin-Hwan;Cho Somi K.;Kim Soo-Hyun
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.49-57
    • /
    • 2006
  • Enzymatic extracts were prepared from the blueberry (Vaccinium corymbosum L.) collected in Jeju, Korea. Five carbohydrases namely AMG, Celluclast, Termamyl, Ultraflo and Viscozyme, and five proteases namely Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex were used to prepare the enzymatic extracts. Antioxidant properties of each extracts were studied using stable 1,1-diphenyl 2-picrylhydrazyl (DPPH), reactive oxygen species (ROS), nitric oxide (NO) scavenging, metal chelating assays and lipid peroxidation inhibitory activity in hemoglobin-induced linoleic acid system. The phenolic content of all enzymatic extracts was in the range of 517.85-597.96 mg/100 g dried sample. DPPH and NO${\cdot}$scavenging, and metal chelating assays exhibited prominent activities. Viscozyme showed the highest DPPH activity $(0.046{\pm}0.002\;mg/mL)$ while AMG Showed the highest activity in NO${\cdot}$scavenging $(0.339{\pm}0.011\;mg/mL)$. All the extracts exhibited strong metal chelating activities. Blueberry enzymatic extracts also showed relatively good activity in hydrogen peroxide scavenging. AMG showed the highest lipid peroxidation inhibitory activity $(0.28{\pm}0.01\;mg/mL)$ in hemoglobin-induced linoleic acid system. In this results, the blueberry, which has potential antioxidant components, may be a good candidate as a natural antioxidant source.

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.