• Title/Summary/Keyword: 금속리싸이클링

Search Result 387, Processing Time 0.025 seconds

The Main Contents of the Countermeasures for Recycling of Used Metal Resources (환경부(環境部) "폐금속자원(廢金屬資源) 재활용(再活用) 대책(對策)"의 주요(主要) 내용(內容))

  • Kim, Soo-Kyung
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.3-12
    • /
    • 2010
  • Countries which have a lot of metal resources are weaponizing metal resources such as supply limitation, high price sale. It's necessary for us to establish the countermeasure for recycling of used metal resources on a government basis. Ministry of Environment has established and announced the project for finding and reuse the hidden metal resources as pan-government department pass the Cabinet meeting at September 22, 2009. This countermeasure, 10 years project, is classified into 2 steps. Aim of this project is advance of the recycling technology and industry, achievement of recycling rate, 75%, improvement in adverse balance of trade, 1.25 billion US$.

Characterization of Metal Composition in Spent Printed Circuit Boards of Mobile Phones (폐휴대폰 내의 인쇄회로기판에 함유된 금속 성분의 변화)

  • Jeong, jinki;Lee, Jae-chun;Choi, Jun-chul
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.76-80
    • /
    • 2015
  • Mobile phone has become one of the essential items in our daily life. In Korea, it is estimated that more than 20 million cell phones are discarded each year due to advancement in technology, thus creating disposal and environmental pollution. In order to conserve the resources, their proper recycling is essential as it contains both valuable and toxic metals. The economics of the recycling will depend on the amount and value of the metals. Therefore, it is necessary to determine the composition of the metals present in the different cell phones. In the present study, a report is presented on the variation of metal content per year of waste mobile phones. A review has been made for the mobile phones manufactured during the period 2000-2009 and metal content of the printed circuit boards (PCBs) by analyzing their metals. An example of the precious metal palladium and of the heavy metal lead shows the decreasing trend.

R&D Trends of Rare Metals Recovery from Seawater (해수(海水)로부터 희유금속(稀有金屬) 회수(回收) 연구동향(硏究動向))

  • Kim, Jong-Heon;Noh, Kyung-Ran;Kim, Sang-Woo;Choi, Sung-Bae;Kil, Sang-Cheol
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.73-80
    • /
    • 2013
  • Marine mineral resources are classified into submarine and seawater mineral resources. In seawater, huge amounts of useful minerals, such as uranium, lithium, magnesium, aluminum, zinc, iron, silver, copper, vanadium, nickel, titanium and cobalt are present. If the rare metals recovery technology from seawater is developed, the commercialization of the precess will be possible. For the 21st century, countries rich in resoures tend to weaponize the resources, according to the depletion of reserves and quality degradation of metal resources in the land. Therefore, Korea that relies on imports for most of the metal resources, should focus on the research and development of the rare metals recovery technology from seawater by using the geographical characteristics of the country that is on three sea-sides.

Leaching of Smelting Reduced Metallic Alloy of Spent Lithium Ion Batteries by the Mixture of Hydrochloric Acid and H2O2 (과산화수소를 혼합한 염산용액으로 폐리튬이온배터리의 용융환원된 금속합금의 침출)

  • Moon, Hyun Seung;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.25-31
    • /
    • 2021
  • Smelting reduction of spent lithium-ion batteries results in the production of metallic alloys in which reduced cobalt, nickel and copper coexist. In this study, we investigated the leaching of the metallic alloys containing the above three metals together with iron, manganese, and silicon. The mixture of hydrochloric acid and hydrogen peroxide as an oxidizing agent was employed, and the effect of the concentration thereof, the reaction time and temperature, and pulp density was investigated to accomplish the complete leaching of cobalt, nickel, and copper. The effect of the hydrogen peroxide concentration and pulp density on the leaching was prominent, compared to that of reaction time and temperature, especially in the range of 20 to 80℃. The complete leaching of the metals present in metallic alloys, except silicon, was accomplished using 2 M HCl and 5% H2O2 with a pulp density of 30 g/L for 150 min at 60℃.

Dissolution and Removal of Silicates in Acid Leaching Process (산 침출 시 실리카 광물의 용해 및 제거)

  • Park, Kyung-Ho;Nam, Chul-Woo;Kim, Hyun-Ho
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.3-11
    • /
    • 2015
  • Soluble silica generated from acid leaching process is very difficult to filter and deceases the purity of products, and thus becomes one of hot issues in hydrometallurgy. This paper reviewed the dissolution and reactivities of silicates in acid solution, and the methods for treatment of soluble silica. Removal of silica with alkaline pre-treatment, crystallization to $SiO_2$ and precipitation behaviour of silica with coagulation under acid conditions were briefly described.

Leaching of Rare Metals from Spent Petroleum Catalysts by Organic Acid Solution (석유화학공정 폐촉매에 함유된 희유금속의 유기산 침출)

  • Le, Minh Nhan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.36-45
    • /
    • 2019
  • The spent petroleum catalysts contain rare metals such as vanadium, nickel, molybdenum, and cobalt. Therefore, the leaching of these rare metals from spent petroleum catalysts by organic acid was investigated in the present study. The leaching efficiency of metals by organic acid was in the following order: oxalic acid > tartaric acid > citric acid > maleic acid > ascorbic acid. Among the organic acids employed in this work, oxalic acid can be considered to be superior to the other acids in terms of metals leaching efficiency. The effect of several leaching conditions such as temperature, acid concentration, pulp density, stirring speed, and reaction time on the leaching of metals was investigated. Vanadium and molybdenum were selectively dissolved by oxalic acid from the spent catalysts. The leaching kinetics of vanadium by oxalic acid was also investigated. An activation energy of 8.76 kJ/mol indicated that the leaching kinetics of vanadium by oxalic acid solution was controlled by mass transfer.

Trend on the Metal Recovery Technologies from Electric and Electronic Equipment Manufacturing Process Wastes (전기전자제품(電氣電子製品)의 제조공정(製造工程)에서 발생(發生)하는 폐기물(廢棄物)로부터 금속회수(金屬回收)에 관한 기술(技術) 동향(動向))

  • Jeong, Jinki;Shin, Doyun;Lee, Jae-Chun;Park, Sang-Woo
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.26-34
    • /
    • 2012
  • Recently, the recovery of resources from waste material of manufacturing electric and electronic equipment has been investigated. It is very important to extract metallic components from electric and electronic manufacturing processes with the view point of recycling of the used resources as well as an environmental protection. In this paper, open/registered patents of US, JP, EP, and KR and SCI journal related to metal recovery technologies from wastes produced in the electric and electronic manufacturing processes between 1975~2011 were reviewed. Patents and papers were collected using key-words searching and filtered by filtering criteria. The trends of the patents and papers were analyzed by the years, countries, companies, and technologies.

Pyro-metallurgical Treatment of used OA Parts for the Recovery of Valuable Metals (유가금속(有價金屬) 회수(回收)를 위한 PCB 스크랩의 건식처리기술(乾式處理技術))

  • Shin, Dong-Yeop;Lee, Sang-Dong;Jeong, Hyeon-Bu;You, Byung-Don;Han, Jeong-Whan;Jung, Jin-Ki
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.46-54
    • /
    • 2008
  • It is well known that PCB (Printed Circuit Board) is a complex mixture of various metals. In this study, pyro-metallurgical process was investigated to extract valuable metallic components from the PCB scrap. PCB scrap was shredded and oxidized to remove plastic materials, and then, quantitative analysis were made. 15 mass %$Al_2O_3-45$ mass %CaO-40 mass %$SiO_2$ and 32 mass %$SiO_2-20$ mass %$Al_2O_3-38$ mass %CaO-10 mass %MgO, were chosen as basic slag compositions which are determined based on the quantitative analysis of PCB scrap. During experiments a super kanthal rotating furnace was used to melt and separate metallic components. Moreover the revolution effect on was the recovery of valuable metals from PCB scrap also investigated.

A Study on the Physical Separation Characteristics of Valuable Metals from the Waste Printed Wiring Boards (물리적 처리에 의한 폐 컴퓨터 기판으로부터 유가금속의 분리선별 특성 연구)

  • 현종영;채용배;정수복
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • Printed wiring boards(PWBs) of the obsolete computers are composed of various organic and inorganic compounds as well as metals and alloys. As convinced that the valuable metals obtained from the PWBs are effectively utilized as secondary resources when recovered by economical methods, in this study, an investigation for characterizing the physical separation techniques is conducted. For the recovery of them, the sockets and chips dismantled from PWBs by scraping and residual resin boards are subjected to the appropriate separation processes according to the physical properties of each part. In the case of crushed socket scraps size ranged from -2.36 mm to +1.18 mm, approximately 97 wt% of the product obtained by magnetic separation consists of metallic compounds. In the case of chip scraps, 97% of Fe-Ni alloy and 95% of Cu metal are recovered by the combined process of air classification and dry magnetic separation in the size range from -2.36 mm to +0.15 mm. Ball milling is adopted in order to improve the removal efficiency of the thin-printed metallic materials on the residual resin boards and approximately 77% of Cu metal is recovered by zigzag separation after ball milling.

Trend on the Metallurgical Technologies for the Platinum Group Metal by the Patent Analysis (특허(特許)로 본 백금족(白金族) 금속(金屬)의 제련기술(製鍊技術) 동향(動向))

  • Shin, Shun-Myung;Park, Jin-Tae;Lee, Jae-Chun;Son, Jeong-Soo;Yoon, Ho-Sung;Kim, Min-Seuk
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.72-81
    • /
    • 2009
  • The demand for platinum group metals for various advanced industries has been growing due to their excellent physical and chemical properties. Since the deposit of platinum minerals are restricted to few countries, their recovery from various secondary resources has becomes an important issue to related industries for keeping the supply reliably. In this paper, patents on the metallurgical technologies for the platinum group metals were analyzed. The search of patent was limited to the open patents of USA (US), European Union (EP), Japan (IP), and Korea (KR) from 1986 to 2006. Patents were surveyed using key-words searching and selected by filtering criteria. The trend of patents was analyzed by the years, countries, companies, and technologies.