DOI QR코드

DOI QR Code

Leaching of Rare Metals from Spent Petroleum Catalysts by Organic Acid Solution

석유화학공정 폐촉매에 함유된 희유금속의 유기산 침출

  • Le, Minh Nhan (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • 르민난 (목포대학교 공과대학 신소재공학과) ;
  • 이만승 (목포대학교 공과대학 신소재공학과)
  • Received : 2019.10.02
  • Accepted : 2019.10.28
  • Published : 2019.12.31

Abstract

The spent petroleum catalysts contain rare metals such as vanadium, nickel, molybdenum, and cobalt. Therefore, the leaching of these rare metals from spent petroleum catalysts by organic acid was investigated in the present study. The leaching efficiency of metals by organic acid was in the following order: oxalic acid > tartaric acid > citric acid > maleic acid > ascorbic acid. Among the organic acids employed in this work, oxalic acid can be considered to be superior to the other acids in terms of metals leaching efficiency. The effect of several leaching conditions such as temperature, acid concentration, pulp density, stirring speed, and reaction time on the leaching of metals was investigated. Vanadium and molybdenum were selectively dissolved by oxalic acid from the spent catalysts. The leaching kinetics of vanadium by oxalic acid was also investigated. An activation energy of 8.76 kJ/mol indicated that the leaching kinetics of vanadium by oxalic acid solution was controlled by mass transfer.

석유화학공정에서 발생하는 폐촉매는 바나듐, 몰리브덴, 니켈, 코발트와 같은 희유금속을 함유하고 있다. 유기산에 의한 상기 금속의 침출에 대해 연구하였다. 본 논문에서 사용한 유기산에 의한 금속의 침출률은 옥살산 > 타르타르산 > 구연산 > 말레산 > 오스코브르산 순서이었다. 상기 유기산은 바나듐과 몰리브덴의 침출에 선택성이 있으며 옥살산에 의한 침출률이 가장 높았다. 옥살산의 농도, 반응온도, 광액밀도, 교반속도를 변화시켜 옥살산에 의한 바나듐의 최적침출조건을 얻었다. 옥살산에 의한 바나듐의 침출에 대한 속도식을 조사한 결과 Avrami식과 잘 맞았으며 활성화에너지는 8.76 kJ/mol로 물질전달에 의해 침출반응이 율속되었다.

Keywords

References

  1. Banda, R., Nguyen, T. H., Sohn, S. H., and Lee, M. S., 2013 : Recovery of valuable metals and regeneration of acid from the leaching solution of spent HDS catalysts by solvent extraction, Hydrometallurgy, 133, pp.161-167. https://doi.org/10.1016/j.hydromet.2013.01.006
  2. Mishra, D., Chaudhury, G. R., Kim, D. J., and Ahn, J. G., 2010 : Recovery of metal values from spent petroleum catalyst using leaching-solvent extraction technique, Hydrometallurgy, 101(1-2), pp.35-40. https://doi.org/10.1016/j.hydromet.2009.11.016
  3. Barik, S. P., Park, K. H., Parhi, P. K., and Park, J. T., 2012 : Direct leaching of molybdenum and cobalt from spent hydrodesulphurization catalyst with sulphuric acid, Hydrometallurgy, 111-112(1), pp.46-51. https://doi.org/10.1016/j.hydromet.2011.10.001
  4. Marafi, M. and Stanislaus, A., 2008 : Spent catalyst waste management: A review. Part I-developments in hydroprocessing catalyst waste reduction and use, Resour. Conserv. Recycl., 52(6), pp.859-873. https://doi.org/10.1016/j.resconrec.2008.02.004
  5. Kalantar, M., Najafi, H., and Afshar, M. R., 2019 : Comparison between vanadium and niobium effects on the mechanical properties of intercritically heat treated microalloyed cast steels, Met. Mater. Int., 25(1), pp.229-237. https://doi.org/10.1007/s12540-018-0154-z
  6. Huang, Y., Peng, X., Yang, Y., Wu, H., Sun, X., and Han, X., 2018 : Electroless Cu/Ni plating on graphite flake and the effects to the properties of graphite flake/Si/Al hybrid composites, Met. Mater. Int., 24(5), pp.1172-1180. https://doi.org/10.1007/s12540-018-0052-4
  7. Nguyen, T. T. N. and Lee, M. S., 2019 : Improvement of alumina dissolution from the mechanically activated dross using ultrasound-assisted leaching, Korean J. Met. Mater., 57(3), pp.154-161. https://doi.org/10.3365/KJMM.2019.57.3.154
  8. Park, K. H., Mohapatra, D., and Reddy, B. R., 2006 : Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method, J. Hazard. Mater., 138(2), pp.311-316. https://doi.org/10.1016/j.jhazmat.2006.05.115
  9. Kim, S. J., Lee, J. Il., Han, K. S., Byun, S. Y., Tran, T., and Kim, M. J., 2018 : Recovery of fine aluminum hydroxide with high whiteness index from low quality bauxite using caustic roasting and water leaching, Korean J. Met. Mater., 56(1), pp.49-58. https://doi.org/10.3365/KJMM.2018.56.1.49
  10. Mazurek, K., 2013 : Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes, Hydrometallurgy, 134-135, pp.26-31. https://doi.org/10.1016/j.hydromet.2013.01.011
  11. Erust, C., Akcil, A., Bedelova, Z., Anarbekov, K., Baikonurova, A., and Tuncuk, A., 2016 : Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semipilot tests, Waste Manag., 49, pp.455-461. https://doi.org/10.1016/j.wasman.2015.12.002
  12. Marafi, M. and Stanislaus, A., 2011 : Waste catalyst utilization: Extraction of valuable metals from spent hydroprocessing catalysts by ultrasonic-assisted leaching with acids, Ind. Eng. Chem. Res., 50(16), pp.9495-9501. https://doi.org/10.1021/ie200789u
  13. Ilhan, S., Kalpakli, A. O., Kahruman, C., and Yusufoglu, I., 2013 : The use of oxalic acid as a chelating agent in the dissolution reaction of calcium molybdate, Metall. Mater. Trans. B, 44(3), pp.495-505. https://doi.org/10.1007/s11663-013-9811-2
  14. Marafi, M., Stanislaus, A., and Absi-Halabi, M., 1994 : Heavy oil hydrotreating catalyst rejuvenation by leaching of foulant metals with ferric nitrate-organic acid mixed reagents, Appl. Catal. B Environ., 4(1), pp.19-27. https://doi.org/10.1016/0926-3373(94)00010-7
  15. Le, M. N. and Lee, M. S., 2019 : Selective dissolution of vanadium (V) from spent petroleum catalysts by oxalic acid solution. J. Min. Metall. Sect. B Metall., (under review).
  16. Lide, D. R., 2007 : CRC Handbook of Chemistry and Physics, 87th ed., Taylor and Francis, Boca Raton, FL, pp.842-846.
  17. Guthrie, J. P., 1978 : Hydrolysis of esters of oxy acids: $pK_a$ values for strong acids; Bronsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units, Can. J. Chem., 56(17), pp.2342-2354. https://doi.org/10.1139/v78-385
  18. Kakumoto, T., Saito, K., and Imamura, A., 1987 : Unimolecular decomposition of oxalic acid, J. Phys. Chem., 91(9), pp.2366-2371. https://doi.org/10.1021/j100293a034
  19. Lindsay, J. G., McElcheran, D. E., and Thode, H. G., 1949 : The isotope effect in the decomposition of oxalic acid, J. Chem. Phys., 17(6), pp.589-589. https://doi.org/10.1063/1.1747340
  20. Szymczycha-Madeja, A., 2011 : Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide, J. Hazard. Mater., 186(2-3), pp.2157-2161. https://doi.org/10.1016/j.jhazmat.2010.11.120
  21. Mulak, W., Szymczycha, A., Lesniewicz, A., and Zyrnicki, W., 2006 : Preliminary results of metals leaching from a spent hydrodesulphurization (HDS) catalyst, Physicochem. Probl. Miner. Process., 40(1), pp.69-76.
  22. Lee, J. Y., Rao, S. V., Kumar, B. N., Kang, D. J., and Reddy, B. R., 2010 : Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation, J. Hazard. Mater., 176(1-3), pp.1122-1125. https://doi.org/10.1016/j.jhazmat.2009.11.137
  23. Parhi, P. K., Park, K. H., and Senanayake, G., 2013 : A kinetic study on hydrochloric acid leaching of nickel from Ni-$Al_2O_3$ spent catalyst, J. Ind. Eng. Chem., 19(2), pp.589-594. https://doi.org/10.1016/j.jiec.2012.09.028
  24. Li, Q., Liu, Z., and Liu, Q., 2014 : Kinetics of vanadium leaching from a spent industrial $V_2O_5/TiO_2$ catalyst by sulfuric acid, Ind. Eng. Chem. Res., 53(8), pp.2956-2962. https://doi.org/10.1021/ie401552v
  25. Sokic, M. D., Markovic, B., and Zivkovic, D., 2009 : Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid, Hydrometallurgy, 95(3), pp.273-279. https://doi.org/10.1016/j.hydromet.2008.06.012
  26. Gao, H., Jiang, T., Xu, Y., Wen, J., and Xue, X., 2018 : Leaching kinetics of vanadium and chromium during sulfuric acid leaching with microwave and conventional calcification-roasted high chromium vanadium slag, Miner. Process. Extr. Metall. Rev., pp.1-10. DOI:10.1080/08827508.2018.1538985.
  27. Peng, H., Liu, Z., and Tao, C., 2016 : Leaching kinetics of vanadium with electro-oxidation and $H_2O_2$ in alkaline medium, Energy and Fuels, 30(9), pp.7802-7807. https://doi.org/10.1021/acs.energyfuels.6b01364
  28. Martell, A. E. and Smith, R. M., 1977 : Critical Stability Constants, Vol. 3., Springer Science + Business Media, New York, pp.92-98.
  29. Beltran, A., Caturla, F., Cervilla, A., and Beltran, J., 1981 : Mo(VI) oxalate complexes, J. Inorg. Nucl. Chem., 43, pp.3277-3282. https://doi.org/10.1016/0022-1902(81)80102-9
  30. Martell, A. E. and Smith, R. M., 1982 : Critical Stability Constants, Vol 5., Springer Science + Business Media, New York, pp.307-309.
  31. Panias, D., Taxiarchou, M., Douni, I., Paspaliaris, I., and Kontopoulos, A., 2014 : Thermodynamic analysis of the reactions of iron oxides: Dissolution in oxalic acid, Can. Metall. Q., 35, pp.363-373. https://doi.org/10.1016/S0008-4433(96)00018-3
  32. Sjoberg, S. and Ohman, L. O., 1985 : Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution. Part 13. A potentiometric and 27Al nuclear magnetic resonance study of speciation and equilibria in the aluminium(III)-oxalic acid-hydroxide system, J. Chem. Soc. Dalt. Trans., 12, pp.2665-2669. https://doi.org/10.1039/DT9850002665
  33. Poulson, S. R., Drever, J. I., and Stillings, L. L., 1997 : Aqueous Si-oxalate complexing, oxalate adsorption onto quartz, and the effect of oxalate upon quartz dissolution rates, Chem. Geol., 140, pp.1-7. https://doi.org/10.1016/S0009-2541(96)00177-5
  34. Peng, H., Liu, Z., and Tao, C., 2015 : Selective leaching of vanadium from chromium residue intensified by electric field, J. Environ. Chem. Eng., 3(2), pp.1252-1257. https://doi.org/10.1016/j.jece.2015.03.031
  35. Lozano, L. J. and Juan, D., 2001 : Leaching of vanadium from spent sulphuric acid catalysts, Miner. Eng., 14(5), pp.543-546. https://doi.org/10.1016/S0892-6875(01)00042-5
  36. Dickinson, C. F. and Heal, G. R., 1999 : Solid-liquid diffusion controlled rate equations, Thermochim. Acta, 340-341, pp.89-103. https://doi.org/10.1016/S0040-6031(99)00256-7
  37. Li, M., Wei, C., Qiu, S., Zhou, X., Li, C., and Deng, Z., 2010 : Kinetics of vanadium dissolution from black shale in pressure acid leaching, Hydrometallurgy, 104(2), pp.193-200. https://doi.org/10.1016/j.hydromet.2010.06.001
  38. Ramos-Cano, J., Gonzalez-Zamarripa, G., Carrillo-Pedroza, F. R., Soria-Aguilar, M. D. J., Hurtado-Macias, A., and Cano-Vielma, A., 2016 : Kinetics and statistical analysis of nickel leaching from spent catalyst in nitric acid solution, Int. J. Miner. Process., 148, pp.41-47. https://doi.org/10.1016/j.minpro.2016.01.006