DOI QR코드

DOI QR Code

Leaching of Smelting Reduced Metallic Alloy of Spent Lithium Ion Batteries by the Mixture of Hydrochloric Acid and H2O2

과산화수소를 혼합한 염산용액으로 폐리튬이온배터리의 용융환원된 금속합금의 침출

  • Moon, Hyun Seung (Department of Advanced Material Science & Engineering, Institute of Rare metal, Mokpo National University) ;
  • Tran, Thanh Tuan (Department of Advanced Material Science & Engineering, Institute of Rare metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Material Science & Engineering, Institute of Rare metal, Mokpo National University)
  • 문현승 (목포대학교 공과대학 신소재공학과) ;
  • ;
  • 이만승 (목포대학교 공과대학 신소재공학과)
  • Received : 2021.09.08
  • Accepted : 2021.09.30
  • Published : 2021.10.30

Abstract

Smelting reduction of spent lithium-ion batteries results in the production of metallic alloys in which reduced cobalt, nickel and copper coexist. In this study, we investigated the leaching of the metallic alloys containing the above three metals together with iron, manganese, and silicon. The mixture of hydrochloric acid and hydrogen peroxide as an oxidizing agent was employed, and the effect of the concentration thereof, the reaction time and temperature, and pulp density was investigated to accomplish the complete leaching of cobalt, nickel, and copper. The effect of the hydrogen peroxide concentration and pulp density on the leaching was prominent, compared to that of reaction time and temperature, especially in the range of 20 to 80℃. The complete leaching of the metals present in metallic alloys, except silicon, was accomplished using 2 M HCl and 5% H2O2 with a pulp density of 30 g/L for 150 min at 60℃.

폐리튬이온배터리를 고온에서 용융환원처리하면 코발트, 니켈 및 구리가 환원된 금속을 얻을 수 있다. 본 논문에서는 상기 금속외에 망간, 철 및 규소가 같이 환원된 금속합금의 침출을 조사하였다. 침출용액으로 염산에 과산화수소를 산화제로 첨가해 염산과 산화제의 농도, 반응시간 및 온도와 광액밀도를 변화시켜 니켈, 코발트 및 구리를 99% 이상 침출시킬 수 있는 조건을 조사하였다. 과산화수소 농도와 광액밀도가 금속의 침출에 미치는 영향이 현저했으며 20에서 80℃의 반응온도범위에서 반응온도는 침출에 큰 영향을 미치지 않았다. 2M의 염산용액에서 5%의 과산화수소를 혼합한 용액으로 60℃의 반응온도와 30 g/L의 광액밀도조건에서 150분 반응시키면 규소를 제외한 모든 금속이 99% 이상 침출되었다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구결과(과제번호 20011183)이며 이에 감사드립니다.

References

  1. Dia, Y., Xu, Z., Hua, D., et al., 2020 : Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: an acid-free, efficient, and selective process, Journal of Hazardous Materials, 396, 122707. https://doi.org/10.1016/j.jhazmat.2020.122707
  2. Sun, Y., Zhu, M., Yao, Y., et al., 2020 : A novel approach for the selective extraction of Li+ from the leaching solution of spent lithium-ion batteries using benzo-15-crown-5 ether as extractant, Separation and Purification Technology, 237, 116325. https://doi.org/10.1016/j.seppur.2019.116325
  3. Chen, S., Wang, Z., Yan, W., 2020 : Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures, Journal of Hazardous Materials, 400, 123169. https://doi.org/10.1016/j.jhazmat.2020.123169
  4. Li, J., Lai, Y., Zhu, X.., et al., 2020 : Pyrolysis kinetics and reaction mechanism of the electrode materials during the spent LiCoO2 batteries recovery process, Journal of Hazardous Materials, 398, 122955. https://doi.org/10.1016/j.jhazmat.2020.122955
  5. Yadav, P., Jie, C. J., Tan, S., et al., 2020 : Recycling of cathode from spent lithium iron phosphate batteries, Journal of Hazardous Materials, 399, 123068. https://doi.org/10.1016/j.jhazmat.2020.123068
  6. Winslow, K. M., Laux, S. J., Rownsend, T. G., 2018 : A review on the growing concern and potential management strategies of waste lithium-ion batteries, Resources, Conservation & Recycling, 129, pp.263-277. https://doi.org/10.1016/j.resconrec.2017.11.001
  7. Yang, J., Gu, F., Guo, J., 2020 : Environmental feasibility of secondary use of electric vehicle lithium-ion batteries in communication base stations, Resources, Conservation & Recycling, 156, 104713. https://doi.org/10.1016/j.resconrec.2020.104713
  8. Fernandes, A., Afonso, J. C., Dutra, A. J. B., 2012 : Hydrometallurgical route to recover nickel, cobalt and cadmium from s pent Ni-Cd batteries, Journal of Power Sources, 220, pp.286-291. https://doi.org/10.1016/j.jpowsour.2012.08.011
  9. Wang, X., Gaustad, G., Babbitt, C. W., 2016 : Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation, Waste Management, 51, pp.204-213. https://doi.org/10.1016/j.wasman.2015.10.026
  10. Liu, C., Deng, Y., Chen, J., et al., 2017 : An Integrated Process to Recover NiMH Battery Anode Alloy with Selective Leaching and Multi-stage Extraction, Industrial & Engineering Chemistry Research.
  11. Pindar, S., Dhawan, N., 2020 : Recycling of mixed discarded lithium-ion batteries via microwave processing route, Sustainable Materials and Technologies, 25, e00157. https://doi.org/10.1016/j.susmat.2020.e00157
  12. Silveira, G. T. R., Chang, S. Y. 2010 : Cell phone recycling experiences in the United States and potential recycling options in Brazil, Waste Management, 30, pp.2278-2291. https://doi.org/10.1016/j.wasman.2010.05.011
  13. Bertuol, D. A., Bernardes, A. M., Tenorio, J. A. S., 2006 : Spent NiMH batteries: Characterization and metal recovery through mechanical processing, Journal of Power Sources, 160, pp.1465-1470. https://doi.org/10.1016/j.jpowsour.2006.02.091
  14. Hageluken, C., 2006 : Recycling of Electronic Scrap at Umicore's Integrated Metals Smelter and Refinery, World of Metallurgy - ERZMETALL, 59, pp.154-161.
  15. Lisbona, D., Snee, T., 2011 : A review of hazards associated with primary lithium and lithium-ion batteries, Process Safety and Environmental Protection, 89, pp.434-442. https://doi.org/10.1016/j.psep.2011.06.022
  16. Li, L., Ge, J., Chen, R., et al., 2010 : Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries, Waste Management. 30, pp.2615-2621. https://doi.org/10.1016/j.wasman.2010.08.008
  17. Aaltonen, M., Peng, C., P.Wilson, B., et al., 2017 : Leaching ofMetals from Spent Lithium-Ion Batteries, Recycling, 2(20), pp.1-9. https://doi.org/10.3390/recycling2010001
  18. Peng, C., Hamuyuni, J., P.Wilson, B., et al., 2018 : Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system, Waste Management, 76, pp.582-590. https://doi.org/10.1016/j.wasman.2018.02.052
  19. Chen, X., Chen, Y., Zhou, T., 2015 : Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Management, 38, pp.349-356. https://doi.org/10.1016/j.wasman.2014.12.023
  20. Chen, L., Tang, X., Zhang, Y., et al., 2011 : Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy, 108(1-2), pp.80-86. https://doi.org/10.1016/j.hydromet.2011.02.010
  21. Moon, H. S., Song, S. J., Tran, T. T., et al., 2021 : Leaching of Cobalt and Nickel from Metallic Mixtures by Inorganic and Organic Acid Solutions, Resources Recycling, 30(2), pp.53-60. https://doi.org/10.7844/KIRR.2021.30.2.53
  22. Rybka, P., Regel-Rosocka, M., 2012 : Nickel and Cobalt Extraction from Chloride Solutions with Quaternary Phosphonium Salts, Separation Science and Technology, 47(9), pp.1296-1302. https://doi.org/10.1080/01496395.2012.672532
  23. Tran, T. T., Moon, H. S., Lee, M. S., 2020 : Separation of Cobalt, Nickel, and Copper from Synthetic Metallic Alloy by Selective Dissolution with Acid Solutions Containing Oxidizing Agent, Mineral Processing and Extractive Metallurgy Review, pp.1-13.