• Title/Summary/Keyword: 금속광산

Search Result 232, Processing Time 0.032 seconds

Application of Spectral Induced Polarization Method for Skarn Metallic Deposits Exploration (스카른 금속광상 탐사를 위한 광대역 유도분극법 적용성)

  • Park, Samgyu;Shin, Seung Wook;Son, Jeong-Sul;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.212-219
    • /
    • 2016
  • The development of more advanced geophysical exploration techniques is necessary because the orebodies as yet discovered are increasingly changing in characteristics from shallow/high-grade to deep/low-grade. In this work, laboratory measurement of physical properties of rock samples and a field survey and interpretation of spectral induced polarization (SIP) have been conducted in a skarn metallic deposit, Gagok mine. The purpose of this study is that the applicability of SIP in the exploration of skarn metallic deposits is verified by the comprehensive interpretation between SIP characteristics of rocks obtained from the laboratory measurements and inverted survey results from the field data. In order to understand the SIP characteristics of each lithology, the data of eighty nine rock samples utilized in the previous studies were revaluated. The field survey was carried out using frequency of 0.25 Hz along a survey line designed for intersecting lithological boundaries and evaluating mineralized zones. The mineralized rocks were more conductive (low-resistivity) and capacitive (high-chargeability or strong-phase) than other rocks. Thus, SIP can be one of the very useful tools for the mineral exploration of the skarn deposits.

Soil Pollution Characteristics of Metallic Mine Area according to Extraction Methods (추출방법에 따른 금속광산 주변의 토양오염 특성)

  • Yang, Jung-Seok;Lee, Ju-Young;Park, Young-Tae;Baek, Ki-Tae;Choi, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • This study investigated the change of metal contamination levels according to amendment of enforcement regulation of the Soil Environmental Conservation Act in Korea. As an analytical result of 87 samples in abandoned metallic mine area, the extracted amount of As, Pb and Cu with aqua regia was 4.3~29.6 times higher than that with hydrochloric acid extraction and the number of samples, which contamination levels were found to exceed soil contamination standards, was also increased. On the other hand, in case of Cd, Zn, and Ni, the number of samples, which contamination levels were found to exceed soil contamination standards, was decreased or similar. These results can be used as a preliminary material in comparison between the soil pollution data accumulated previously and the data obtained by the revised standard method for the examination of soil pollution.

Effect of Adhesion layer on the Optical Scattering Properties of Plasmonic Au Nanodisc (접착층을 고려한 플라즈모닉 금 나노 디스크의 광산란 특성)

  • Kim, Jooyoung;Cho, Kyuman;Lee, Kyeong-Seok
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.464-470
    • /
    • 2008
  • Metallic nanostructures have great potential for bio-chemical sensor applications due to the excitation of localized surface plasmon and its sensitive response to environmental change. Unlike the commonly explored absorption-based sensing, the optical scattering provides single particle detection scheme. For the localized surface plasmon resonance spectroscopy, the metallic nanostructures with controlled shape and size have been usually fabricated on adhesion-layer pre-coated transparent glass substrates. In this study, we calculated the optical scattering properties of plasmonic Au nanodisc using a discrete dipole approximation method and analyzed the effect of adhesion layer on them. Our result also indicates that there is a trade-off between the surface plasmon damping and the capability of supporting nanostructures in determining the optimal thickness of adhesion layer. Marginal thickness of Ti adhesion layer for supporting Au nanostructures fabricated on a silica glass substrate was experimentally analyzed by an adhesion strength test using a nano-indentation technique.

Spectral Characteristics of Heavy Metal Contaminated Soils in the Vicinity of Boksu Mine (복수광산 주변 중금속 오염 토양의 분광학적 특성)

  • Shin, Ji Hye;Yu, Jaehyung;Jeong, Yong Sik;Kim, Seyoung;Koh, Sang-Mo;Park, Gyesoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.89-101
    • /
    • 2016
  • This study investigated spectral characteristics of heavy metal contaminated soil samples in the vicinity of abandoned Boksu mine. Heavy metal concentrations including arsenic, lead, zinc, copper and cadmium were analyzed by XRF analysis. As a result, all of the soil samples excluding control sample were over-contaminated based on the counter measure standard. The XRD results revealed that quartz, kaolinite and smectite were detected for all of the soil samples and heavy metals in soil were adsorbed on clay minerals such as kaolinite and smectite. The spectral analyses confirmed that spectral reflectance of near-infrared and shorter portion of shortwave-infrared spectrum decreases as heavy metal concentration increases. Moreover, absorption depths at 2312 nm and 2380 nm, the absorption features of clay minerals, decreases with higher heavy metal concentration indicating adsorption of heavy metal ions with clay minerals. It indicates that spectral features and heavy metal contamination of soil samples have high correlations.

Geochemical Experiment for Effective Treatment of Abandoned Mine Wastes (광산폐석의 효과적 처리를 위한 지화학적 연구)

  • 이진국;이재영
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.31-44
    • /
    • 1998
  • The geochemical experiments were carried out to investigate a removal effect of heavy metals in abdndoned metallic mine wastes, and to conceive a treatment techniques of them. In order to prevent contamination, experiment appature was made of acrylic acid resin and polyethylene which resist to acid and alkali. Experiment models are devided into four groups based on the system environments, distribution patterns and a kind of filling materials. The first group is background model(model I ) which is filled with waste only and opened to air. The second one is four layer group which is subdivided into two models, opened and closed systems, and the third mix group which is subdivided into three models based on mixing ratio of filling materials and system environment like a layered group. The forth is composed of two layer model, lower one composed of waste and upper one limestone chips. Solution drained from Model Ishows a high contents of heavy metals on the all terms of experiments. Among the models, however, the closed mix model V and Ⅶ show the most effective removal of heavy metals liberated from wastes. Models having different mixing ratios of filling materials on closed systems does not affect in heavy metal removal effect. But, the distribution patterns of filling materials affect very much on removal effect of heavy metals. The closed models with same constitution ratios and distribution patterns of filling materials show more and less effective removal to the open models.

  • PDF

An Overview of Geoenvironmental Implications of Mineral Deposits in Korea (한반도 광상 성인유형에 따른 환경 특성)

  • 최선규;박상준;이평구;김창성
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.1-19
    • /
    • 2004
  • Metallic deposits in Korea have a variety of genetic types such as hydrothermal veins, skarns, hydrothermal replacement and alaskite deposits and so on. Geological, mineralogical and geochemical features including host rock, wall-rock alteration, ore and gangue mineralogy, mineral texture and secondary mineralogy related to weathering process control the environmental signatures of mining areas. The environmental signatures of metallic deposits closed from early 1970s to late 1990s in Korea show complicate geochemistry and mineralogy due to step weathering of primary and secondary minerals such as oxidation-precipitation-remobilization. The potentiality of low pH and high heavy metal Concentration s from acid mine drainage is great in base-metal deposits associated with polymetallic mineralization, breccia-pipe type and Cretaceous hydrothermal Au veins with the amount of pyrite whereas skam, hydrothermal replacement, hydrothermal Cu and Au-Ag vein deposits are in low contamination possibility. The geoenvironmental models reflecting the various geologic features closely relate to disuibution of sulfides and carbonates and their ratios and finally effect on characteristics of environmental signatures such as heavy metal species and their concentrations in acid mine drainage.

GPR Exploration of Non-metallic Water Pipes Linked with Network RTK (네트워크 RTK와 연계한 비금속 상수관의 GPR 탐사)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.296-301
    • /
    • 2021
  • GPR is used for non-destructive investigations, ground investigations, and underground facilities exploration at construction sites. In this study, the applicability to GPR exploration of water pipes linked to Network RTK was presented. Data on the water supply pipes in the study site were acquired using GPR, and the location and depth of buried water pipes could be measured. The accuracy was evaluated from the GNSS observation performance and showed a deviation of -0.16m ~ 0.15m. This satisfied the equipment performance of the public survey work regulation, suggesting that the exploration of water pipes using GPR is possible. Because GPR does not require grounding installation, as in conventional metal pipe detectors, it will increase the efficiency of work for underground facility exploration. Exploration using GPR can acquire the location and depth of metallic and non-metallic underground facilities, so it can be utilized in the construction of a GIS system. If a comparison of the exploration characteristics is carried out, it will be possible to present various uses of underground facility exploration using GPR.

A Public-oriented e-marketplace Framework for the Mining Industry (광산업의 B2B 공적 e-Marketplace 프레임워크 구축에 관한 연구)

  • Park, Ki-Nam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.5
    • /
    • pp.53-61
    • /
    • 2006
  • We propose public-oriented e-Marketplace framework construction that activates efficiently transaction of non-metal industrial resources through the case of Mineralland. The firms of Non-metal industrial resources domain have low information level and weak capital structure. So public enterprise has to construct e-marketplace to trade using exact market information. This framework consists of five domains-contents, commerces, communities, collaboration and electronic authentication. To draw this framework, we review many web-sites and literatures about B2B of industrial resources domain. In addition, this study provides practical implications and guidelines for activating public oriented e-Marketplace of non metal industrial resources.

  • PDF

Characteristics of Geochemical Behaviors of Trace Metals in Drainage from Abandoned Sechang Mine (세창 폐금속광산 수계에서 미량원소의 지구화학적 거동특성 규명)

  • Kang Min-Ju;Lee Pyeong-Koo;Youm Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.213-227
    • /
    • 2006
  • The geochemical evolution of mine drainage and leachate from waste rock dumps and stream water in Pb-As-rich abandoned Sechang mine area was investigated to elucidate mechanisms of trace metals. Total and sequential extractions were applied to estimate the distribution of trace metals in constituent phases of the waste rocks and to assess the mobility of trace metals according to physicochemical conditions. These discharged waters varied largely in chemical composition both spatially and temporally, and included cases with significant]y low pH (in the range 2.1-3.3), and extremely sulphate (up to 661 mg/l and metal contents (e.g. up to 169 mg/l for Zn, 27 mg/l for As, 3.97 mg/l for Pb, 2.99 mg/l for Cu, and 1.88 mg/l for Cd). Arsenic and heavy metal concentrations at the down-stream of Sechang mine have been decreased nearly to the background level in downstream sites (sites 8 and 16) without any artificial treatments. The oxidation of Fe-sulfides and the subsequent hydrolysis, of Fe(II), with precipitation of poorly crystallized minerals, constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace metals (i.e. Fe and As) to rivers. The dilution of drainage by mixing with pristine waters provoked an additional decrease of trace metal concentrations and a progressive pH increase. On the other hand, the most soluble cations (i.e. Zn) remained significantly as dissolved solutes until the pH was raised to approximately neutral values. With respect to ecotoxicity, it is likely that the Zn pollution is of particular concern in Sechang mine area. This was confirmed by the sequential extraction experiment, where Zn in wet waste-rock samples occurred predominantly in the exchangeable fraction (65-89% of total), while Pb was the highest in the reducible and carbonate fractions, and Cd, Cu and As in the residual fraction. Pb concentration in the readily available exchangeable fraction (34-48% of total) was dominated for dried waste rock samples. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreased in the order of Zn>Pb>Cd>As=Cu.

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry (첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황)

  • Sang-Mo Koh;Bum Han Lee;Chul-Ho Heo;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.781-797
    • /
    • 2023
  • Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.