• Title/Summary/Keyword: 글루코코르티코이드 수용체

Search Result 6, Processing Time 0.025 seconds

Hormonal Regulation of the Caprine $\beta$-Lactoglobulin Gene Promoter Activity (염소의 베타-락토글로불린 유전자 프로모터 활성의 호르몬에 의한 조절)

  • 김재만;김경진
    • The Korean Journal of Zoology
    • /
    • v.38 no.3
    • /
    • pp.426-432
    • /
    • 1995
  • Expression of $\beta$-lactoglobulin gene in mammary tissue is strongly induced by lactogenic hormones such as prolactin, glucocorticoid, and insulin. In order to elucidate the regulatory mechanism underlying such hormonal induction, the response of the caprine $\beta$-lactoglobulin gene promoter to lactogenic hormones was analyzed in cultured HC11 mammary cells. Expression with serial deletions of the 5' -regulatory sequence of the $\beta$-lactoglobulin promoter revealed that two regions are responsible for a substantial change in hormonal indudbility. The region upstream of-1692, which exhibited strong repression of the downstream promoter, mediated the induction by insulin. This insulin-response was independent of the other two lactogenic hormones, prolactin and glucocorticoid. The other region from -740 to -470, which showed strong activation of the $\beta$-lactoglobulin promoter in confluent HC11 mammary cells, mediated mainly the response to a glucocorticoid analogue, dexametasone. The induction by the latter region, however, was suppressed by the usptream repression without insulin treatment. These results suggest that the induction of $\beta$-lactoglobulin promoter activity by lactogenic hormones in mammary cells may be achieved by the combined action of derepression by in sulin and activation by glucocorticoid and prolactin. Dexametasone response by the latter region seems to be mediated by the glucocorticoid receptor site around -7OObp.

  • PDF

In vitro Analysis of Glucocorticoid-induced Reporter Gene Expression Using Lentivirus System (Lentivirus System을 이용한 Glucocorticoid 유도 Reporter 유전자 발현의 분석)

  • Lee, Mi-Sook;Kim, Ji-Yeon;Her, Song
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • Glucocorticoid hormone regulates numerous physiological processes, such as regulation of metabolism, and anti-inflammatory and immunosuppressive actions via the activation and repression of gene expression. Here we described a lentivirus-based reporter vector system expressing red fluorescent protein (mRFP) or firefly luciferase (Luc) under the control of a glucocorticoid-responsive element that allows observation of the temporospatial pattern of glucocorticoid induced GR-mediated signaling on a cellular level. Moreover, usage of the chromatin insulator of the chicken ${\beta}$-globin locus induced a marked increase of sensitivity of glucocorticoid inducible promoter of a reporter gene. Use of this method will be applicable of screening for agonist and antagonist of GR in vitro, and also a reporter gene assay for the in vivo determination of the GR-mediated gene activation.

  • PDF

Function of 27-Hydroxycholesterol in Various Tissues and Diseases (다양한 조직 및 질병에서 27-하이드록시콜레스테롤의 역할 및 기전 고찰)

  • Shim, Wan-Seog;Lee, Chanhee;Azamov, Bakhovuddin;Kim, Koanhoi;Lee, Dongjun;Song, Parkyong
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.256-262
    • /
    • 2022
  • Oxysterols are oxygenated metabolites of cholesterol generated by serial enzymatic reactions during bile acid synthesis. Similar to cholesterol, oxysterols move rapidly to the intracellular region and modulate various cellular processes, such as immune cell responses, lipid metabolism, and cholesterol homeostasis. Different nuclear transcription factors, such as glucocorticoid, estrogen, and liver X receptors, can be modulated by oxysterols in multiple tissues. The most abundant oxysterol, 27-hydroxycholesterol (27-OHC), is a well-known selective modulator that can either activate or suppress estrogen receptor activity in a tissue-specific manner. The contribution of 27-OHC in atherosclerosis development is apparent because a large amount of it is found in atherosclerotic plaques, accelerating the transformation of macrophages into foam cells that uptake extracellular modified lipids. According to previous studies, however, there are opposing opinions about how 27-OHC affects lipid and cholesterol metabolism in metabolic organs, including the liver and adipose tissue. In particular, the effects of 27-OHC on lipid metabolism are entirely different between in vitro and in vivo conditions, suggesting that understanding the physiology of this oxysterol requires a sophisticated approach. This review summarizes the potential effects of 27-OHC in atherosclerosis and metabolic syndromes with a special discussion of its role in metabolic tissues.

Effect of Saccharin Intake in Restraint-induced Stress Response Reduction in Rats (구속 스트레스 쥐 모델에서 스트레스 반응 감소에 대한 사카린 섭취의 효과)

  • Park, Jong Min;Song, Min Kyung;Kim, Yoon Ju;Kim, Youn Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.18 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Purpose: Stress activates the sympathetic nervous system and hypothalamic-pituitary-adrenal (HPA) axis and induces the release of glucocorticoids. Saccharin is 300 times sweeter than sucrose, but does not increase blood insulin levels. Thus, this study was designed to evaluate the effect of saccharin intake in restraint-induced stress response reduction in rats. Methods: Adult male Sprague-Dawley (SD) rats had stress induced by restraint for 2 hours/day for 1 week. Saccharin was provided in sufficient amounts to allow them to intake it voluntarily at 0.1% diluted in water. The Y-maze test and forced swim test (FST) were performed to evaluate cognitive function and the depressive behavior of the rats. The protein expression of the glucocorticoid receptor (GR) in hippocampal cornu ammonis (CA) 1 was investigated by using immunohistochemistry. Results: It was found that, the percentage of alternation in the Y-maze test was significantly (p<.01) higher in the Stress + saccharin group than in the Stress group. Immobility time in the FST was significantly (p<.01) lower in the Stress + saccharin group than in the Stress group. Also, the positive cells of GR in hippocampus CA1 were significantly (p<.05) lower in the Stress + saccharin group than in the Stress group. Conclusion: This study showed that there was an effect of saccharin intake in restraint-induced stress response reduction in rats.

Molecular Genetic Characterization and Analysis of Glucocorticoid Receptor Expression in the Big-belly Seahorse Hippocampus abdominalis (빅벨리해마(Hippocampus abdominalis) 글루코코르티코이드 수용체의 분자 유전학적 동정과 발현 분석)

  • Jo, Eunyoung;Oh, Minyoung;Lee, Sukkung;Qiang, Wan;Lee, Jehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.346-353
    • /
    • 2015
  • Glucocorticoids (GCs) are steroid hormones regulated through responses to stress to maintain diverse metabolic and homeostatic functions. GCs act on the glucocorticoid receptor (GR), a member of the nuclear receptor family. This study identified and characterized the GR gene from the big-belly seahorse Hippocampus abdominalis designating it HaGR. The open reading frame of the HaGR cDNA was 2,346 bp in length, encoding a 782-amino-acid polypeptide with a theoretical isoelectric point of 6.26 and predicted molecular mass of 86.8 kDa. Nuclear receptors share a common structural organization, comprising an N-terminal transactivation domain, DNA-binding domain, and C-terminal ligand-binding domain. The tissue-specific mRNA expression profile of HaGR was analyzed in healthy seahorses using a qPCR technique. HaGR mRNA was expressed ubiquitously in all of the tissues examined, with the highest expression levels in kidney, intestine, stomach, and gill tissues. The mRNA expression in response to immune challenge with lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), Edwardsiella tarda, and Streptococcus iniae revealed that it is inducible in response to pathogen infection. These results suggest that HaGR is involved in the immune response of the big-belly seahorse.

Antidepressant effects of capsaicin in rats with chronic unpredictable mild stress-induced depression (만성 스트레스로 유발된 우울증 쥐 모델에서 캡사이신의 항우울 효과)

  • Jae Ock, Lim;Min Ji, Kim;Jun Beom, Bae;Chan Hyeok, Jeon;Jae Hyeon, Han;Tae Hyeok, Sim;Youn Jung, Kim
    • Journal of Korean Biological Nursing Science
    • /
    • v.25 no.1
    • /
    • pp.280-320
    • /
    • 2023
  • Purpose: This study was conducted to assess the antidepressant effects of capsaicin in chronic depressive rats and elucidate the mechanism underlying its effects. Methods: Male Wistar rats (280~320 g, 8 weeks of age) were subjected to depression induced by chronic unpredictable mild stresses. The rats were exposed to 8 kinds of stresses for 8 weeks. In the last 2 weeks, fluoxetine or capsaicin was injected subcutaneously. The dose of fluoxetine was 10 mg/kg (body weight), while the doses of capsaicin consisted of low (1 mg/kg), middle (5 mg/kg), and high (10 mg/kg). The forced swim test (FST) was conducted to evaluate the immobility time of rats. The immobility time indicates despair, one of symptoms of depression. The change of tryptophan hydroxylase (TPH) in the dorsal raphe was investigated using immunohistochemistry. In the hippocampus cornu ammonis (CA) 1 and 3, glucocorticoid receptor (GR) expression was measured. Results: The immobility time in the FST was significantly lower (p < .05) in the low-dose (M = 32.40 ± 13.41 seconds) and middle-dose (M = 28.48 ± 19.57 seconds) groups than in the non-treated depressive rats (M = 90.19 ± 45.34 seconds). The amount of TPH in the dorsal raphe was significantly higher (p < .05) in the middle-dose (M = 249.17 ± 35.02) and high-dose (M = 251.0 ± 56.85) groups than in the non-treated depressive rats (M = 159.78 ± 41.16). However, GR expression in the hippocampus CA1 and CA3 did not show significant differences between the non-treated depressive rats and the capsaicin-injected rats. Conclusion: This study suggests that capsaicin produces an antidepressant-like effect on chronic unpredictable mild stress-induced depression in rats via the serotonin biosynthesis pathway.