DOI QR코드

DOI QR Code

Antidepressant effects of capsaicin in rats with chronic unpredictable mild stress-induced depression

만성 스트레스로 유발된 우울증 쥐 모델에서 캡사이신의 항우울 효과

  • 임재옥 (경희대학교 간호과학대학) ;
  • 김민지 (경희대학교 간호과학대학) ;
  • 배준범 (경희대학교 간호과학대학) ;
  • 전찬혁 (경희대학교 간호과학대학) ;
  • 한재현 (경희대학교 간호과학대학) ;
  • 심태혁 (경희대학교 일반대학원 간호학과) ;
  • 김연정 (경희대학교 간호과학대학)
  • Received : 2022.10.31
  • Accepted : 2023.02.10
  • Published : 2023.02.28

Abstract

Purpose: This study was conducted to assess the antidepressant effects of capsaicin in chronic depressive rats and elucidate the mechanism underlying its effects. Methods: Male Wistar rats (280~320 g, 8 weeks of age) were subjected to depression induced by chronic unpredictable mild stresses. The rats were exposed to 8 kinds of stresses for 8 weeks. In the last 2 weeks, fluoxetine or capsaicin was injected subcutaneously. The dose of fluoxetine was 10 mg/kg (body weight), while the doses of capsaicin consisted of low (1 mg/kg), middle (5 mg/kg), and high (10 mg/kg). The forced swim test (FST) was conducted to evaluate the immobility time of rats. The immobility time indicates despair, one of symptoms of depression. The change of tryptophan hydroxylase (TPH) in the dorsal raphe was investigated using immunohistochemistry. In the hippocampus cornu ammonis (CA) 1 and 3, glucocorticoid receptor (GR) expression was measured. Results: The immobility time in the FST was significantly lower (p < .05) in the low-dose (M = 32.40 ± 13.41 seconds) and middle-dose (M = 28.48 ± 19.57 seconds) groups than in the non-treated depressive rats (M = 90.19 ± 45.34 seconds). The amount of TPH in the dorsal raphe was significantly higher (p < .05) in the middle-dose (M = 249.17 ± 35.02) and high-dose (M = 251.0 ± 56.85) groups than in the non-treated depressive rats (M = 159.78 ± 41.16). However, GR expression in the hippocampus CA1 and CA3 did not show significant differences between the non-treated depressive rats and the capsaicin-injected rats. Conclusion: This study suggests that capsaicin produces an antidepressant-like effect on chronic unpredictable mild stress-induced depression in rats via the serotonin biosynthesis pathway.

Keywords

References

  1. Truax P, Selthon L. Mood disorders. In: Hersen, Michel, Turner, Samuel M, editors. Diagnostic interviewing. 3rd ed. Boston, MA: Springer; 2003. p. 111-147.
  2. Hunt IM, Kapur N, Robinson J, Shaw J, Flynn S, Bailey H, et al. Suicide within 12 months of mental health service contact in different age and diagnostic groups. British Journal of Psychiatry. 2006;188(2):135-142. https://doi.org/10.1192/bjp.188.2.135
  3. Department of Mental Health Care. Announcement of the COVID-19 national mental health survey results in the second quarter of 2022 [Internet]. Sejong: Ministry of Health and Welfare; 2022 Aug 11 [cited 2022 Aug 20]. Available from: http://www.mohw.go.kr/react/al/sal0301vw.jsp?PAR_MENU_ID =04&MENU_ID =0403&page =1&CONT_SEQ= 372545
  4. Benefits Information Analysis Department. Analysis of the current status of the treatment of depression and anxiety disorders in the last 5 years (2017-2021) [Internet]. Wonju: Health Insurance Review & Assessment Service; 2022 Jun 24 [cited 2022 Aug 20]. Available from: https://www.hira.or.kr/bbsDummy.do?pgmid=HIRAA020041000100&brdScnBltNo=4&brdBltNo=10627&pageIndex=1#a
  5. Beck AT. Depression: causes and treatment. Philadelphia, PA: University of Pennsylvania Press; 1972. p. 370.
  6. Stahl SM. Molecular neurobiology for practicing psychiatrists, part 5: how a leucine zipper can turn on genes: immediate-early genes activate late-gene expression in the brain. Journal of Clinical Psychiatry. 2000;61(1):7-8. https://doi.org/10.4088/jcp.v61n0103
  7. Liu Y, Zhao J, Guo W. Emotional roles of mono-aminergic neurotransmitters in major depressive disorder and anxiety disorders. Frontiers in Psychology. 2018:9:2201. https://doi.org/10.3389/fpsyg.2018.02201
  8. Cowen PJ, Browning M. What has serotonin to do with depression? World Psychiatry. 2015;14(2):158-160. https://doi.org/10.1002/wps.20229
  9. Taylor C, Fricker AD, Devi LA, Gomes I. Mechanisms of action of antidepressants: from neurotransmitter systems to signaling pathways. Cellular Signalling. 2005;17(5):549-557. https://doi.org/10.1016/j.cellsig.2004.12.007
  10. Ferguson JM. SSRI antidepressant medications: adverse effects and tolerability. Primary Care Companion to The Journal of Clinical Psychiatry. 2001;3(1):22-27. http://doi.org/10.4088/pcc.v03n0105
  11. Rosenbaum JF, Fava M, Hoog SL, Ascroft RC, Krebs WB. Selective serotonin reuptake inhibitor discontinuation syndrome: a randomized clinical trial. Biological Psychiatry. 1998;44(2):77-87. https://doi.org/10.1016/S0006-3223(98)00126-7
  12. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annual Review of Medicine. 2009;60:355-366. https://doi.org/10.1146/annurev.med.60.042307.110802
  13. Hornung JP. The neuroanatomy of the serotonergic system. In: Christian PM, Barry LJ, editors. Handbook of the behavioral neurobiology of serotonin. 1st ed. London: Academic Press; 2010. p. 51-64.
  14. Chen Y, Xu H, Zhu M, Liu K, Lin B, Luo R, et al. Stress inhibits tryptophan hydroxylase expression in a rat model of depression. Oncotarget. 2017;8(38):63247-63257. https://doi.org/10.18632/oncotarget.18780
  15. Sapolsky RM. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biological Psychiatry. 2000;48(8):755-765. https://doi.org/10.1016/S0006-3223(00)00971-9
  16. Wingenfeld K, Wolf OT. Stress, memory, and the hippocampus. The Hippocampus in Clinical Neuroscience. 2014;34:109-120. https://doi.org/10.1159/000356423
  17. Lucassen PJ, Muller MB, Holsboer F, Bauer J, Holtrop A, Wouda J, et al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. The American Journal of Pathology. 2001;158(2):453-468. https://doi.org/10.1016/S0002-9440(10)63988-0
  18. Chourbaji S, Gass P. Glucocorticoid receptor transgenic mice as models for depression. Brain Research Reviews. 2008;57(2):554-560. https://doi.org/10.1016/j.brainresrev.2007.04.008
  19. Srinivasan K. Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: a review. Critical Reviews in Food Science and Nutrition. 2015;56(9):1488-1500. https://doi.org/10.1080/10408398.2013.772090
  20. Winter J, Bevan S, Campbell EA. Capsaicin and pain mechanisms. British Journal of Anaesthesia. 1995;75(2):157-168. http://dx.doi.org/10.1093/bja/75.2.157
  21. Jain A, Mishra A, Shakkarpude J, Lakhani P. Beta endorphins: the natural opioids. International Journal of Chemical Studies. 2019;7(3):323-332.
  22. Reyes-Mendez ME, Castro-Sanchez LA, Dagnino-Acosta A, Aguilar-Martinez I, Perez- Burgos A, Vazquez-Jimenez C, et al. Capsaicin produces antidepressant-like effects in the forced swimming test and enhances the response of a sub-effective dose of amitriptyline in rats. Physiology & Behavior. 2018;195:158-166. https://doi.org/10.1016/j.physbeh.2018.08.006
  23. Xia J, Gu L, Guo Y, Feng H, Chen S, Jurat J, et al. Gut microbiota mediates the preventive effects of dietary capsaicin against depression-like behavior induced by lipopolysaccharide in mice. Frontiers in Cellular and Infection Microbiology. 2021;11:627608. https://doi.org/10.3389/fcimb.2021.627608
  24. Amiri S, Alijanpour S, Tirgar F, Haj Mirzaian A, Amini Khoei H, Rahimi Balaei M, et al. NMDA receptors are involved in the antidepressant like effects of capsaicin following amphetamine withdrawal in male mice. Neuroscience. 2016;329:122-133. https://doi.org/10.1016/j.neuroscience.2016.05.003
  25. Hayase T. Differential effects of TRPV1 receptor ligands against nicotine-induced depression-like behaviors. BMC Pharmacology. 2011;11(1):1-11. https://doi.org/10.1186/1471-2210-11-6
  26. Seong HH, Park JM, Kim YJ. Antidepressive effects of environmental enrichment in chronic stress-induced depression in rats. Biological Research For Nursing. 2017;20(1):40-48. https://doi.org/10.1177/1099800417730400
  27. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology. 1987;93(3):358-364. https://doi.org/10.1007/bf00187257
  28. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34(1):13-25. https://doi.org/10.1016/s0896-6273(02)00653-0
  29. Tang M, Jiang P, Li H, Liu Y, Cai H, Dang R, et al. Fish oil supplementation alleviates depressant-like behaviors and modulates lipid profiles in rats exposed to chronic unpredictable mild stress. BMC Complementary and Alternative Medicine. 2015;15(1):239-239. https://doi.org/10.1186/s12906-015-0778-1
  30. Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. Journal of Visualized Experiments. 2015;97. https://doi.org/10.3791/52587
  31. Shaleh LA, Almutairi FM, Alorabi WK, Alkuhayli BA, Alzaidi SS, Alzahrani SB, et al. Short and long term effects of vitamin D treatment on Bacillus Calmette-Guerin induced depressive like behavior in mice. Neuropsychiatric Disease and Treatment. 2021;17:711-720. https://doi.org/10.2147/ndt.s291793
  32. National Research Council. Guide for the care and use of laboratory animals [Internet]. Washington DC: The National Academies Press; 2010 [cited 2023 Feb 7]. Available from: https://grants.nih.gov/grants/olaw/guide-for-the-care-anduse-of-laboratory-animals_prepub.pdf
  33. Willner P. Animal models as simulations of depression. Trends in Pharmacological Sciences. 1991;12:131-136. https://doi.org/10.1016/0165-6147(91)90529-2
  34. Haycock JW, Kumer SC, Lewis DA, Vrana KE, Stockmeier CA. A monoclonal antibody to tryptophan hydroxylase: applications and identification of the epitope. Journal of Neuroscience Methods. 2002;114(2):205-212. https://doi.org/10.1016/S0165-0270(01)00530-1
  35. Seoung HH, Jung SM, Kim SW, Kim YJ. Effects of physical activity and melatonin in a rat model of depression induced by chronic stress. Journal of Korean Biological Nursing Science. 2015;17(1):37-43. https://doi.org/10.7586/jkbns.2015.17.1.37
  36. Cheer SM, Goa KL. Fluoxetine. Drugs. 2001;61:81-110. http://dx.doi.org/10.2165/00003495-200161010-00010
  37. Aguilar-Martinez IS, Reyes-Mendes ME, Herrera-Zamora JM, Osuna-Lopez F, Virgen-Ortiz A, Mendoza-Munoz N. Synergistic antidepressant like effect of capsaicin and citalopram reduces the side effects of citalopram on anxiety and working memor y in rats. Psychopharmacolog y. 2020;237(7):2173-2185. https://doi.org/10.1007/s00213-020-05528-6
  38. Baes C, von W, Martins CMS, Tofoli SM de C, Juruena MF. Early life stress in depressive patients: HPA axis response to GR and MR agonist. Frontiers in Psychiatry. 2014;5.2-2. http://dx.doi.org/10.3389/fpsyt.2014.00002
  39. Sousa N, Cerqueira JJ, Almeida OFX. Corticosteroid receptors and neuroplasticity. Brain Research Reviews. 2008;57(2):561-570. http://dx.doi.org/10.1016/j.brainresrev.2007.06.007
  40. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816-824. http://dx.doi.org/10.1038/39807
  41. Szallasi A, Nilsson S, Farkas-Szallasi T, Blumberg PM, Hokfelt T, Lundberg JM. Vanilloid (capsaicin) receptors in the rat: distribution in the brain, regional differences in the spinal cord, axonal transport to the periphery, and depletion by systemic vanilloid treatment. Brain Research. 1995;703(1-2):175-183. http://dx.doi.org/10.1016/0006-8993(95)01094-7
  42. Chavez AE, Chiu CQ, Castillo PE. TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nature Neuroscience. 2010;13:1511-1518. http://dx.doi.org/10.1038/nn.2684
  43. Szallasi A, Cruz F, Geppetti P. TRPV1: a therapeutic target for novel analgesic drugs? Trends in Molecular Medicine. 2006;12(11):545-554. http://dx.doi.org/10.1016/j.molmed.2006.09.001
  44. Kauer JA, Gibson HE. Hot flash: TRPV channels in the brain. Trends in Neurosciences. 2009;32(4):215-224. http://dx.doi.org/10.1016/j.tins.2008.12.006
  45. Marinelli S, Pascucci T, Bernardi G, Puglisi-Allegra S, Mercuri NB. Activation of TRPV1 in the VTA excites dopaminergic neurons and increases chemical-and noxious-induced dopamine release in the nucleus accumbens. Neuropsychopharmacology. 2005;30:864-870. http://dx.doi.org/10.1038/sj.npp.1300615
  46. Madasu MK, Roche M, Finn DP. Supraspinal transient receptor potential subfamily V member 1 (TRPV1) in pain and psychiatric disorders. Pain in Psychiatric Disorders. 2015; 30:80-93. http://dx.doi.org/10.1159/000435934
  47. Fattori V, Hohmann MS, Rossaneis AC, Pinho-Ribeiro FA, Verri Jr WA. Capsaicin: current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules. 2016;21(7):844. https://doi.org/10.3390/molecules21070844
  48. Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, et al. TRPV1 reporter mice reveal highly restriced brain distribution and functional expression in arterior smooth mucle cells. Jouranl of Neuroscience. 2011;31(13):5067-5077. https://doi.org/10.1523/JNEUROSCI.6451-10.2011
  49. Guler AD, Rainwater A, Parker JG, Jones GL, Argilli E, Arenkiel BR, et al. Transient activation of specific neurons in mice by selective expression of the capsaicin receptor. Nature Communications. 2012;3(1):1-10. https://doi.org/10.1038/ncomms1749