Browse > Article
http://dx.doi.org/10.5657/KFAS.2015.0346

Molecular Genetic Characterization and Analysis of Glucocorticoid Receptor Expression in the Big-belly Seahorse Hippocampus abdominalis  

Jo, Eunyoung (Department of Marine Life Science, Jeju National University)
Oh, Minyoung (Department of Marine Life Science, Jeju National University)
Lee, Sukkung (Department of Marine Life Science, Jeju National University)
Qiang, Wan (Department of Marine Life Science, Jeju National University)
Lee, Jehee (Department of Marine Life Science, Jeju National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.48, no.3, 2015 , pp. 346-353 More about this Journal
Abstract
Glucocorticoids (GCs) are steroid hormones regulated through responses to stress to maintain diverse metabolic and homeostatic functions. GCs act on the glucocorticoid receptor (GR), a member of the nuclear receptor family. This study identified and characterized the GR gene from the big-belly seahorse Hippocampus abdominalis designating it HaGR. The open reading frame of the HaGR cDNA was 2,346 bp in length, encoding a 782-amino-acid polypeptide with a theoretical isoelectric point of 6.26 and predicted molecular mass of 86.8 kDa. Nuclear receptors share a common structural organization, comprising an N-terminal transactivation domain, DNA-binding domain, and C-terminal ligand-binding domain. The tissue-specific mRNA expression profile of HaGR was analyzed in healthy seahorses using a qPCR technique. HaGR mRNA was expressed ubiquitously in all of the tissues examined, with the highest expression levels in kidney, intestine, stomach, and gill tissues. The mRNA expression in response to immune challenge with lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), Edwardsiella tarda, and Streptococcus iniae revealed that it is inducible in response to pathogen infection. These results suggest that HaGR is involved in the immune response of the big-belly seahorse.
Keywords
Big-belly seahorse; Glucocorticoid receptor; Immune stimulation; Molecular profile; Tissue specific mRNA expression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Acerete L, Balasch J, Castellana B, Redruello B, Roher N, Canario A, Planas J, MacKenzie S and Tort L. 2007. Cloning of the glucocorticoid receptor (GR) in gilthead seabream (Sparus aurata): differential expression of GR and immune genes in gilthead seabream after an immune challenge. Comp Biochem Physiol Part B: Biochem Molec Biol 148, 32-43. http://dx.doi.org/10.1016/j.cbpb.2007.04.015.   DOI
2 Barton BA. 2002. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. ICB 42, 517-525. http://dx.doi.org/10.1093/icb/42.3.517.
3 Barton BA and Iwama GK. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann Rev Fish Dis 1, 3-26. http://dx.doi.org/10.1016/0959-8030(91)90019-G.   DOI
4 Bonga SW. 1997. The stress response in fish. Physiol Rev 77, 591-625.   DOI
5 Castillo J, Teles M, Mackenzie S and Tort L. 2009. Stress-related hormones modulate cytokine expression in the head kidney of gilthead seabream (Sparus aurata). Fish Shellfish Immunol 27, 493-499. http://dx.doi.org/10.1016/j.fsi.2009.06.021.   DOI   ScienceOn
6 Cato AC and Wade E. 1996. Molecular mechanisms of antiinflammatory action of glucocorticoids. Bioessays 18, 371-378. http://dx.doi.org/ 10.1002/bies.950180507.   DOI
7 Chrousos GP. 1998. Stressors, stress, and neuroendocrine integration of the adaptive response: the 1997 Hans Selye Memorial Lecture. Ann N Y Acad Sci 851, 311-335. http://dx.doi.org/ 10.1111/j.1749-6632.1998.tb09006.x.   DOI
8 Colombe L, Fostier A, Bury N, Pakdel F and Guiguen Y. 2000. A mineralocorticoid-like receptor in the rainbow trout, Oncorhynchus mykiss: cloning and characterization of its steroid binding domain. Steroids 65, 319-328. http://dx.doi.org/10.1016/S0039-128X(00)00090-8.   DOI
9 De Bosscher K, Berghe WV and Haegeman G. 2000. Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol 109, 16-22. http://dx.doi.org/10.1016/S0165-5728(00)00297-6.   DOI
10 Gamperl A, Vijayan M and Boutilier R. 1994. Experimental control of stress hormone levels in fishes: techniques and applications. Rev Fish Biol Fisher 4, 215-255. http://dx.doi.org/10.1007/BF00044129.   DOI
11 Hu GX, Lian QQ, Lin H, Latif SA, Morris DJ, Hardy MP and Ge RS. 2008. Rapid mechanisms of glucocorticoid signaling in the Leydig cell. Steroids 73, 1018-1024. http://dx.doi.org/10.1016/j.steroids.2007.12.020.   DOI   ScienceOn
12 Koldewey HJ and Martin-Smith KM. 2010. A global review of seahorse aquaculture. Aquaculture 302, 131-152. http://dx.doi.org/10.1016/j.aquaculture.2009.11.010.   DOI
13 Lee EK and Park YJ. 2008. Metabolic Regulation of Nuclear Receptors. Endocrinol Metab Clin N Am 23, 155-164. http://dx.doi.org/10.3803/jkes.2008.23.3.155.   DOI
14 Lee P, Goodrich M, Struve M, Yoon H and Weber D. 1992. Liver and brain glucocorticoid receptor in rainbow trout, Oncorhynchus mykiss: down-regulation by dexamethasone. Gen Comp Endocrinol 87, 222-231. http://dx.doi.org/10.1016/0016-6480(92)90026-G.   DOI
15 Nicolaides NC, Galata Z, Kino T, Chrousos GP and Charmandari E. 2010. The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75, 1-12. http://dx.doi.org/10.1016/j.steroids.2009.09.002.   DOI
16 Lourie SA, Foster SJ, Cooper EW and Vincent AC. 2004. A guide to the identification of seahorses. Project Seahorse and TRAFFIC North America, Washington D.C., U.S.A.
17 McCormick SD. 1995. 11 Hormonal Control of Gill $Na^+$, $K^+$-ATPase and Chloride Cell Function. Fish Physiol 14, 285-315. http://dx.doi.org/10.1016/S1546-5098(08)60250-2.   DOI
18 Mommsen TP, Vijayan MM and Moon TW. 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9, 211-268. http://dx.doi.org/10.1023/A:1008924418720.   DOI
19 Reid SG, Bernier NJ and Perry SF. 1998. The adrenergic stress response in fish: control of catecholamine storage and release. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 120, 1-27. http://dx.doi.org/10.1016/S0742-8413(98)00037-1.   DOI
20 Sandor T, DiBattista JA and Mehdi AZ. 1984. Glucocorticoid receptors in the gill tissue of fish. Gen Comp Endocrinol 53, 353-364. http://dx.doi.org/10.1016/0016-6480(84)90262-4.   DOI
21 Schottelius A and Baldwin Jr A. 1999. A role for transcription factor NF-kB in intestinal inflammation. nt J Colorectal Dis 14, 18-28. http://dx.doi.org/10.1007/s003840050178.   DOI
22 Selye H. 1973. The Evolution of the Stress Concept: The originator of the concept traces its development from the discovery in 1936 of the alarm reaction to modern therapeutic applications of syntoxic and catatoxic hormones. AmSci 61, 692-699.
23 Tokuda Y, Touhata K, Kinoshita M, Toyohara H, Sakaguchi M, Yokoyama Y, Ichikawa T and Yamashita S. 1999. Sequence and expression of a cDNA encoding japanese flounder glucocorticoid receptor. Fish Sci 65, 466-471. http://dx.doi.org/10.2331/fishsci.65.466.   DOI
24 Shin SP, Han JE, Gomez DK, Kim JH, Choresca Jr CH, Jun JW and Park SC. 2011. Identification of scuticociliate Philasterides dicentrarchi from indo-pacific seahorses Hippocampus kuda. Afr J Microbiol Res 5, 738-741.   DOI
25 Tagawa M, Hagiwara H, Takemura A, Hirose S and Hirano T. 1997. Partial cloning of the hormone-binding domain of the cortisol receptor in tilapia, Oreochromis mossambicus, and changes in the mRNA level during embryonic development. Gen Comp Endocrinol 108, 132-140. http://dx.doi.org/10.1006/gcen.1997.6955.   DOI
26 Takahashi H, Sakamoto T, Hyodo S, Shepherd BS, Kaneko T and Grau EG. 2006. Expression of glucocorticoid receptor in the intestine of a euryhaline teleost, the Mozambique tilapia (Oreochromis mossambicus): effect of seawater exposure and cortisol treatment. Life Sci 78, 2329-2335. http://dx.doi.org/10.1016/j.lfs.2005.09.050.   DOI
27 Tort L. 2011. Stress and immune modulation in fish. Dev Comp Immunol 35, 1366-1375. http://dx.doi.org/10.1016/j.dci.2011.07.002.   DOI
28 Vazzana M, Vizzini A, Salerno G, Di Bella M, Celi M and Parrinello N. 2008. Expression of a glucocorticoid receptor (DlGR1) in several tissues of the teleost fish Dicentrarchus labrax. Tissue Cell 40, 89-94. http://dx.doi.org/10.1016/j.tice.2007.09.008.   DOI
29 Wang W, Li A, Cai T and Wang J. 2005. Effects of intraperitoneal injection of cortisol on non-specific immune functions of Ctenopharyngodon idella. J Fish Biol 67, 779-793. http://dx.doi.org/10.1111/j.0022-1112.2005.00779.x.   DOI
30 Weyts F, Flik G and Verburg-van Kemenade B. 1998. Cortisol inhibits apoptosis in carp neutrophilic granulocytes. Dev Comp Immunol 22, 563-572. http://dx.doi.org/10.1016/S0145-305X(98)00027-5.   DOI
31 Woods C, 2007. Aquaculture of the big-bellied seahorse Hippocampus abdominalis Lesson 1827 (Teleostei: Syngnathidae). Ph.D. Thesis, Victoria University, Melbourne, Australia
32 Zapata A, Diez B, Cejalvo T, Gutierrez-de Frias C and Cortes A. 2006. Ontogeny of the immune system of fish. Fish Shellfish Immunol 20, 126-136. http://dx.doi.org/10.1016/j.fsi.2004.09.005.   DOI   ScienceOn